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Resumen— Se presenta la evolución numérica de un 
campo escalar de prueba en el espacio de Minkowski, 
utilizando la técnica de mallas refinadas adaptativas 

(AMR). La dinámica del campo escalar está dada por la 
ecuación de Klein Gordon con un potencial 
exponencial, el cual es usado como un modelo de 
campos escalares tipo quintaesencia. Primero se 
realizará la descripción del algoritmo AMR. Luego se 
realizará un análisis relacionado con la convergencia de 
las simulaciones numéricas, encontrando convergencia 
de segundo orden, las cuales son consistentes con el 
esquema de diferencias finitas de segundo orden usado.  
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Abstract— In this paper we present the numerical 

evolution of a test scalar field on a Minkowski 
background using adaptive mesh refinement techniques 
(AMR). The Dynamics of the scalar field is given by the 
Klein Gordon equation with an exponential potential, 
which has been used as a model of quintessence scalar 
fields. As a first step in this work a description of the 
AMR algorithm is presented. Then we perform an 
analysis related to the convergence of the numerical 

simulations, founding convergence of second order, 
which is consistent with the second order finite 
difference scheme used. 
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I. INTRODUCTION 

 

Scalar fields have been of great interest since them 

have played an important role in general relativity 

and cosmology. For instance, scalar fields have been 

used in cosmology to give a possible solution to the 

horizon and flatness problems, by assuming a 

mechanism that provides an exponential 

cosmological growth [1]. Moreover, in [2], by 

considering the supernovae redshift observations, the 

authors explored the possibility of a cosmic scalar 

field to play the role of dark energy. Scalar fields 

have been also proposed as a model of dark matter, 

either to galactic [3] or cosmological scales [4]. On 

the other hand, AMR methods are important because 

they allow studying complex problems with a high 
accuracy, without increasing the computational cost 

too much. This is because when we solve the 

problems numerically these methods are adapted to 

the dynamics of the problem, using meshes that have 

different resolutions in different regions and that also 

adapt over time. In our case, an algorithm based on 

the work of Berger and Oliger [5], Berger and 

Colella [6] and Guzmán [7] was implemented with 

the aim of adapting the numerical solution to a 

specific one-dimensional problem as a first step to 

advance in the development of this type of 

algorithms.  
 

In this work, we explore the evolution of a scalar 

field on a Minkowski space-time by using adaptive 

mesh refinement techniques. Specifically, in this first 

article, we focus the attention in the implementation 

of the AMR methods in our codes, in order to solve 

the Klein-Gordon equation with exponential 

potential, which is written as a first order system of 

equations by using the 3+1 formulation of the 

general relativity. It should be mentioned that the 

way this system of equations is written will allow us, 
in future works, to evolve the scalar field in a curve 

background and so be able to do a full 3D numerical 

study of the accretion of scalar field dark matter on to 

a Kerr black hole with AMR techniques, which is 

very useful at the time of giving high resolution close 

to the black hole. It should be noted that exponential 

potential has been used in a great variety of works. 

For instance, this potential is considered as a possible 

model for quintessence, see [8]. Moreover, this 

potential arises naturally in the context of Kaluza-
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Klein theories, as well as in a variety of supergravity 

models [9]. 

 

The paper is organized as follows, in section 2 we 

show the Klein Gordon equation in the 3+1 

formulation of the general relativity as well as the 

potential and initial profile for the scalar field. In 

section 3, we describe the adaptive mesh refinement 

method used to solve the Klein-Gordon on the 
Minkowski space-time. In section 4, we present the 

evolution in time of the scalar field and show the self 

convergence test in order to validate our results. 

Finally in section 5, we present some conclusions. It 

is worth mentioning that the units we assume in the 

paper are such that  � � � � 1. 

 
II. KLEIN GORDON 

EQUATION 

 

In this paper we consider the classical nature of the 

scalar field, as assumed in SFDM and quintessence 

models, from an effective Lagrangian  

 

 L � �R � 	∇Φ�
 � V	Φ�, (1) 

 

where � is the Ricci scalar of the space-time,�the 

scalar field and �	�� its potential. The variation of 

such Lagrangian with respect to � reduces to the 

Klein-Gordon (KG) equation, which rules the 

evolution of the scalar field. 
 

 □Φ � ��
�� � 0, (2) 

 

where the D'Alambertian operator for a general 

space-time is □Φ � ∇
Φ �
�1 ��g⁄ � ∂����gg�� ∂Φ . Since we work on a fixed 

background space-time there is no need to vary the 

Lagrangian with respect to the metric, which would 

imply Einstein's equations. In terms of the variables 

of the 3 � 1 splitting approach of general relativity 

[10], the KG equation can be written as a first order 

system of equations as follows 
 

∂"Π � ∂$�β$Π � α√γγ$)ΨΨ)� � α√γ ��
��, (3) 

 ∂"Ψ$ � ∂$ + ,
√- � β)Ψ$., (4) 

 ∂"Φ � ,
√- Π � β)Ψ), (5) 

 

Where Π � √γ �∂"Φ � β) ∂)Ψ� α⁄  and Ψ) � ∂)Φ are 

new first order variables, /is the lapse function,  01 

the shift vector, 213 are the components of the spatial 

induced metric and γ � det�γ$)�.  It is worth 

mentioning that in this work, we restrict our AMR 

numerical calculations to the Minkowski space time. 

However in the way these equations are written allow 

us to run simulations in a curve fixed background 

[11]. 
 

In this work, we will consider the exponential 

potential, which is given by the expression 

 

 V	Φ� � V7e8,� 
(6) 

Where �7 and / are positive constants. Here we 

work in units for which � � � � 1. On the other 

hand, in order to solve the first order KG system of 

equations (5), we provide a scalar field initial profile 

similar to that described in [12] , which corresponds 

to a time-symmetric wave modulated by a Gaussian 

profile 

 Φ	0, x� � Acos	kx�e
8	A8AB�C

DC  

Ψ	0, x� � ∂Φ	0, x�
∂x  

Π	0, x� � 0 

(7) 

where E and F are the amplitude and width of this 

initial profile. 
 

 

III. ADAPTIVE MESH 

REFINEMENT 

 

In numerical analysis, the AMR method adapts the 

grid resolution according to the dynamics of the 

specific problem to be solved, building refined 
meshes in determined regions of the domain, which 

can appear and disappear as it becomes necessary. 

Those grids also can move in regards of a physical 

criterion. In this work, we have built a refined grid 

that displaces with the maximum value of the 

numerical error (for instance, sensitive regions or that 

present turbulence).  At the beginning of the 

simulations, the algorithm creates a regular Cartesian 

grid that covers the whole domain, which is called 

base-grid. In the case of the Klein Gordon equation, 

the regions that present the maximum numerical 
error displace with a constant velocity, which makes 

easier to adapt the movement of the refined grids.  In 

other cases is normally based on the estimation of the 

numerical error or in proper parameters of the 

system. 



277  Scientia et Technica Año XXIII, Vol. 23, No. 02, junio de 2018. Universidad Tecnológica de Pereira.                                                                                

 

A. Coupled Evolution. 
 

A very important aspect in the AMR methods is that 

the adaptive meshes have a coupled evolution, which 

consists in a singular grid with different resolutions 

in some parts of the domain, and no different grids 

evolving independently. In order to do this, is 

necessary to consider two aspects: the first one is that 
the values of the base-grid are replaced with the 

values of the son-grid for each time step. This 

guarantees that the base-grid does not evolve to the 

next step with its numerical error (which is bigger). 

The second aspect is that the border points of the 

son-grid need to be calculated from the interpolation 

of the points in the base-grid at each time of the 

simulation. These can be better explained with Figure 

1. 
 

 
Figure 1 Evolution of a one-dimensional grid with a sub-
domain refined by α � 4. In this figure we represent the 

evolution of a single base-grid time step, where the circled 

violet points correspond to the base grid, the orange 
squares to the refined grid and the violet squares are 
calculated by using the interpolation of the base-grid in the 
shaded region. When the orange squares are inside the 
violet circles means that the values of the refined grid are 
replaced with the values of the grid-base. The time step of 
the base-grid is dt � CFL ∗ dx, and the time step of the 

son-grid is dtK � CFL ∗ dxK � CFL ∗ 	1 α⁄ � ∗ dx 

dtK � CFL ∗ 	1 4⁄ � ∗ dx � 	1 4⁄ �dt and so on for more 

refined levels. 

 

 

The algorithm discretizes the partial differential 

equations with the method of finite differences, 

integrating in time with the Runge Kutta schemes, 

and for the boundary calculations we impose out-

going wave conditions, interpolating them with the 

Lagrange method. Finally, to adapt the grids with the 

dynamics of the problem, we displace them each 
certain amount of time steps, depending on the 

required velocity.  

 

IV. NUMERICAL RESULTS 

 

After carrying out the implementation of the AMR 

algorithm with the characteristics specified in the 

previous section, we solve the Klein Gordon equation 

(2) with an exponential potential as shown in 

equation ((6). In Figure 2 and Figure 3, we plot the 

complete evolution for a time interval, where the 

base-grid and the refined-grid are displayed, the latter 

moving at the same speed as one of the propagated 

pulses, since the region near the pick of the pulse is 

the one that presents the maximum numerical error. 

Later, the numerical error associated with this 

solution is calculated, and it is shown in Figure 4, 

where it can be seen that the pulse traveling with a 

refined mesh presents a considerable decrease in the 

error. Finally, tests are carried out to verify the 

accuracy of the implemented algorithm, which in this 
case are the self-convergence and are presented in 

Figure 5. 

 

 

Figure 2 Evolution of the numerical solution for a complete 

time interval using AMR. The time range is L0,0.8O, the 

refined subdomain L�0.3,0.3O moves at the same speed of 

one of the pulses within the base domain L�1,1O. 
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Figure 3 Captures for different instants of time for the 

evolution shown in Figure 2, P � 0, P � 0.3, P � 0.6 y P �
0.8 respectively. 

 

 

Figure 4 Evolution of the numerical error associated with 

each of the plots in Figure 3. The error is calculated by 

subtracting two numerical solutions with different base 

resolution. 

 

 

 

 

 

Figure 5 Convergence factor for each time step in 

evolution shown in Figure 2. This factor is calculated using 

three numerical solutions for three different base 

resolutions. 

 
V. CONCLUSION 

 

The same postulates used to develop this algorithm 

are extensible without problem to two and three 

dimensions, which are algorithms in process of 

development with favorable results. It was found that 

numerical error in a specific region can be reduced 

by refining only such region, reducing the 

computational cost. Moreover there is an adequate 

convergence by the AMR code, which is consistent 

with the second order finite differences used. Finally, 
we note that is not convenient to perform an abrupt 

refinement when improving the resolution 

considerably, it is better to do it by levels. 
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