
Scientia et Technica Año XXIV, Vol. 24, Vol. 24, No. 01, marzo de 2019. Universidad Tecnológica de Pereira. ISSN 0122-701 y ISSN-e: 2344-7214                                                    

                                                           

 

113 

Abstract— Flexible riser response prediction relies on semi-

empirical models hindered by limitations due experimental data 

scarcity for particular modelling considerations. This paper 

presents a numerical-based approach for predicting the flexible 

riser response under oscillatory flows. A single freedom degree 

spring-mass-damper system is employed with the mass allowed to 

move in cross-flow direction. To discretize the Navier-Stokes 

equations the Finite Volume Method is used. To analyze the flow 

patterns in each regime the cylinder oscillating period is executed 

for long time. A bi-dimensional model is setting up using 

OpenFOAM simulations. Flow behavior, hydrodynamic forces 

and frequencies were analyzed for Reynolds values between 40-

1000 using a 𝑲𝑪 number 7,9. For Reynolds less than 300 the 

behavior is in agreement with the literature. For Reynolds 300 or 

higher, some discrepancies appear in the system dynamics. The 

numerical results obtained from the numerical approach shows 

good agreement with experimental data collected from a flexible 

riser model. 

 

Index Terms— Flexible riser, Keulegan-Carpenter number, 

Numerical Simulation, Oscillating Flow, Vortex Dynamics 

 

 Resumen— La predicción de respuesta en tuberías verticales 

flexibles se basa en modelos semiempíricos limitados por escasez 

de datos experimentales para modelados particulares. Este 

artículo presenta un enfoque numérico para predecir la respuesta 

de tuberías verticales flexibles en flujos oscilatorios. Se 

implementa un grado de libertad en un sistema de masa-resorte 

amortiguado, con la masa habilitada para moverse en la dirección 

transversal al flujo. Las ecuaciones de Navier-Stokes son 

discretizadas empleando el Método de Volúmenes Finitos. Los 

patrones de flujo en cada régimen son analizados en períodos de 

oscilación extensos. Se emplea un modelo bidimensional simulado 

en OpenFOAM. Se analiza el comportamiento del flujo, fuerzas 

hidrodinámicas y frecuencias para los valores de Reynolds entre 

40 y 1000 utilizando 𝑲𝑪 𝟕, 𝟗. Para Reynolds, inferiores a 300, el 

comportamiento del modelo está de acuerdo con la literatura. Para 

valores de Reynolds 300 o más, algunas discrepancias aparecen en 

la dinámica del sistema. Los resultados numéricos obtenidos a 
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I. INTRODUCTION 

he movement around a cylinder is still an issue of great 

interest in fluid dynamics because several key engineering 

structures, such as marine cables, riser tubes, pipelines, 

submarines, and off-shore structures among others, are affected 

by the accumulated stress. These applications are exposed to an 

external variable velocity flow that causes vortex shedding 

downstream the cylinder, an unsteady unwanted phenomenon. 

The frequency at which the vortices are shear is known as 

vortex shedding frequencies; a regular pattern of vortices 

induces fluctuating lift and drag forces on the cylinder [1]. 

Additionally, to the cylinder structural properties and the 

incoming flow characteristics, those vortices can exert a 

significant dynamic stress, increasing the damage accumulation 

and eventually causing structural failure.  

 

In some situations, the current relative velocity may be non-

stationary, due either to structural movement or to oscillations 

in the incoming flow itself [2]. The structural movement is a 

very common phenomenon in flexible cylindrical systems but 

there is still a limitation to accurately predict the response of 

these structures because most of the prediction models rely 

heavily on large experimental databases. In addition, flexible 

and light materials have been developing for marine 

applications leading to slender structures with low mass ratios 

(defined as the ratio of mass of the cylindrical system per unit 

length to the mass of displaced water). Thorsen et al. [2] 
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presents an improved semi-empirical model for predicting the 

risers response, the model provides realistic results in terms of 

frequency content, amplitude of vibration, and demonstrated 

that the maximum amplitude for cross flow oscillation is 

smaller for the high mass ratio case. Bowen Fu and Decheng 

Wan [3] presented a numerical model based solely on the 

computational fluid dynamics method using the strip theory, 

and showed that it is possible to rely only on numerical 

simulations for risers response prediction, overcoming the 

limitations of large databases used by most current software for 

predicting the response of risers; those authors use a mass ratio 

of 1.53 and 𝐾𝐶 numbers ranging from 21 to 184. 

 

A great deal of works about oscillatory flow around a fixed 

cylinder have been done (e.g. [4], [5], [6], [7], [8], [9]). It has 

been found that as flow period increases, the flow behavior 

change, and the number of vortices shed from the cylinder 

increases with the Keulegan–Carpenter (𝐾𝐶) number 

increasing. This number is defined as  𝐾𝐶 = 𝑈𝑚𝑇/𝐷, where 

𝑈𝑚 is the amplitude of the oscillatory flow velocity, 𝑇 is the 

oscillatory flow period and 𝐷 is the diameter of the cylinder. In 

this way, the 𝐾𝐶 value determines the sinusoidal oscillatory 

flow characteristics and hence the hydrodynamics forces 

generated by vortices around the cylinder. When 𝐾𝐶 is small 

enough, the cylinder`s surface boundary-layer is laminar and 

two-dimensional, but as the 𝐾𝐶 increases it will become 

unstable and three-dimensional [10]. 

 

Experimental work allowed to visualize the flow conduct for 

𝐾𝐶 numbers from 4 to 30 [5], [11]. The vortex pairs numbers 

shed during each half of a flow period allows to classify the 

oscillatory flow around a cylinder as transverse street  7 <
𝐾𝐶 < 13, single pair 13 < 𝐾𝐶 < 15, double pair 15 < 𝐾𝐶 <
24, three pairs 24 < 𝐾𝐶 < 32 and four pairs 32 < 𝐾𝐶 < 40 

vortex shedding regimes. Also, for each vortex shedding regime 

the relationship between vortex motions and time-dependent 

lift-force variations have been described [12]. Although, 

extensive study of the vertical motion types produced when a 

cylinder oscillates in a resting fluid has been made [13]. The 

Tatsuno and Bearman’s [13] experiment and modelling differs 

from Govardhan and Williamson [12] by the force vibration 

condition and free vibration respectively, a very close 

correspondence between these flows has been described [14].  

 

With the available data accumulation, heavy influences of 

Reynolds number on the cylinder maximum response have been 

demonstrated by Govardhan and Williamson [12] and Klamo et 

al. [15]. Both experimental and computational studies use a 

very small mass ratio (𝑚∗𝜉) or zero for damping respectively. 

These studies showed that the Reynolds number becomes 

crucial in the transition regimen and many authors have been 

researching its influence until a value of 500, considering a 

fixed value for 𝐾𝐶 ( [16], [17], [18], [19], [20], [21], [22], [23]).  

Tatsuno and Bearman [13] analyzed 1.6 < 𝐾𝐶 < 15 and 5 <
𝛽 < 160 (𝛽 = 𝑅𝑒/𝐾𝐶 = 𝐷2/𝜈𝑇, where 𝜈 is the kinematic 

viscosity and Reynolds number is 𝑅𝑒 = 𝑈𝑚𝐷/𝜈), including 

three dimensional features, provided the identification of eight 

regimes denoted from A to G, as show in Fig. 1 in a plane 

(𝐾𝐶, 𝑅𝑒). This classification has become the standard 

description for the associated flow regimes. The regimen A 

corresponds to the Williamson`s symmetrical regimen [5] , that 

is also similar to Regime B but with an axial direction three-

dimensional structure. Regime C corresponds to vortices of 

opposite rotation senses in the same fashion of a Von Kármán 

vortex street. Regime D exhibits a symmetrical V-pattern 

around the transverse axis, very similar to regime E, however 

here the V-pattern changes intermittently its direction from one 

side to the other. Regime F describes the Williamson`s double 

pair regime [5], whereas the Williamson`s transverse street is 

similar to Regime G [5]. Finally, the Tatsuno and Bearman [13] 

regimen classification suggest that a 𝐾𝐶 such as 7,9 that crosses 

five different regimens, can be assumed as critical and 

important to be studied. 

 
Fig. 1.  Classification of flow regimens A to G, identify by Tatsuno and 

Bearman [13]. 

 

This study describes and discusses the oscillating fluid flow 

effect around a cylinder under the influence of a fixed 𝐾𝐶 (7,9) 

and Re between 40 and 1000, considering lower mass ratio and 

covering the most Tatsuno and Bearman regimes (A, D, E, F 

and G, see Fig. 1). The cylinder oscillating period is 

implemented for a long time (more than fifty cycles) in order to 

analyze the flow patterns in each regime. A single degree of 

freedom system with a spring-mass-damper is implemented, 

where the mass is allowed to move only in cross-flow direction. 

To discretize the transport equations, the Finite Volume Method 

(FVM) is used and to resolve the pressure-velocity linkage, an 

iterative solution strategy SIMPLEC algorithm for transient 

problems is used. Moreover, a bi-dimensional model is 

established using OpenFOAM simulations and employing a 

single desktop computer. The results presented here consider an 

experimental validation by Riveros et al. [24] in order to 

demonstrate the use of numerical based approaches to predict 

the response of flexible risers.  

 

In what follows, section 2 presents the numerical method 

description with the respective equations modeling, parameters 

taking account, computational domain and boundary 

conditions. The section 3 provides the procedure for model 

validation. Vortices behavior descriptions and the time history 

of the drag and lift forces estimating when Reynolds increases 

are present in section 4. Likewise, this section put forward a 

discussion of the flow characterization according to the 

transitions between regimes established for different intervals 
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of Reynolds values. In addition, the results are compared with 

experimental data in this section. A study summary is presented 

in section 5.  

II. NUMERICAL METHOD  

This section briefly describes the precisions of the main 

parameters and numerical method implemented in this study.  

 

A. Governing equations and other parameters 

To model the vortex generation around a structure, 

commonly a sinusoidal oscillatory flow is considered to 

represent a realistic phenomenon representation. The flow in 

the longitudinal direction is given by: 

 

𝑈1(𝑡) = 𝑈𝑚𝑠𝑖𝑛 (2 𝜋𝑡 𝑇⁄ )               (1) 

 

The oscillating flow considered is controlled by 40, 100, 150, 

200, 250, 300, 500 and 1000 as Reynolds numbers and 7,9 as 

Keulegan Carpenter number, so eight different regimens were 

simulated. Other parameters (mass, damping, reduced velocity) 

are set up to allow the cylinder movement.  

 

The mass ratio corresponds to  𝑚∗ = 𝑚/𝑚𝑑, where 𝑚 

represents the cylinder mass and 𝑚𝑑 the displaced fluid mass. 

The structural damping ratio is defined as 𝜁 = 𝑐/2√𝑘𝑚, 

where 𝑐 is the structural damping and 𝑘 is the stiffness of the 

spring. Finally, reduced velocity is determined as 𝑉𝑟 =
 𝑈𝑚/(𝑓𝑛𝑤𝐷), where 𝑓𝑛𝑤 represents the cylinder natural 

frequency measured in water.  

 

To solve the two-dimensional incompressible Navier-Stokes 

equations, the flow evolution is computed by 

 

𝑑𝑖𝑣(𝒖) = 0                     (2) 
𝜕𝑢

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖 = −

1

𝜌
𝛻𝑝 +

𝜇

𝜌
𝛻2𝒖 

 

Where 𝒖 and 𝑝 represent the velocity and pressure fields in 

the fluid. 

 

A discretized form of equation (2) must be defined at a nodal 

point placed within each control volume in order to solve the 

problem. OpenFOAM, an open source solver, is used to solve 

the governing equations selecting adequate solution schemes in 

order to achieve reliable results. To reach it, a second-order 

central difference scheme is used for the convection and 

diffusion terms. A stable and accurate simulation is obtained by 

choosing an implicit second-order scheme for temporal 

discretization. For the numerical procedure in the simulation, to 

improve the pressure and velocity coupling, the PIMPLE 

algorithm is utilized [25]. 

 

The structure is allowed to move only perpendicularly to the 

flow direction. To apply the transport equations to the inertial 

system, time to time and according to the cylinder movement, 

the numerical grid is moved and adjusted. For that reason, a 

mesh dynamic motion solver is implemented in the model, 

where the cylinder is constrained to only move along “𝑦” and 

cannot rotate. Finally, the total force per unit length by a 

stationary cylinder under an oscillatory flow 𝐹𝑜𝑠𝑐  is known as 

Morison’s equation [26], written as: 

 

𝐹𝑜𝑠𝑐(𝑡) = 𝜌𝐶𝑚
𝜋

4
𝐷2𝑈̇(𝑡) +

1

2
𝜌𝐶𝐷𝐷|𝑈(𝑡)|𝑈(𝑡)        (3) 

 

Where 𝜌 represents the fluid density, 𝐶𝑚 the inertia coefficient 

and 𝐶𝐷 the drag coefficient. The last two are functions of 

𝑅𝑒  and 𝐾𝐶.  

 

B. Computational domain 

The computational domain is a cylinder in a channel 

represented using two-dimensional numerical simulations as 

shown in Fig. 2. The cylinder is represented as a circle with 

diameter 𝐷 submersed in an incompressible fluid, represented 

here as a rectangular flow domain. As the simulation begins, the 

center body is located at the center of the coordinate’s axis, 10𝐷 

from the horizontal walls and 20𝐷 from the vertical walls. The 

domain areas around the cylinder, where the vortices are shed, 

contains a higher cell density in order to obtain a better 

resolution. This region is shaped by four arcs whose radius 

equal 2.5√2𝐷.  

 
Fig. 2.  Sketch of oscillating flow around circular cylinder 

 

To guarantee the smallest numerical errors, it is necessary to 

proof the meshing independently. The test is developed from a 

course mesh established, using a non-dimensional time step  

𝑈1∆𝑡/𝐷 = 0,1 (where ∆𝑡  is time step) as sufficient condition to 

ensure coefficients with three significant digits [27]. Then, the 

mesh is refined consecutively and the time step is determined 

from the Courant number (𝑐𝑜) expression, 𝑐𝑜 = |𝑈1|∆𝑡/∆𝑥 

where ∆𝑥 is the smaller cell size in the velocity direction and 𝑐𝑜 

is defined as 0.2 [28]. Finally, the appropriate mesh is selected 

considering the fitting between results and literature and the 

tradeoff between precision and computational cost.  

C. Boundary conditions 

To carry out the time-dependent simulation, boundary 

conditions are imposed at each time step. An oscillating 

velocity is given in the inlet for x-direction only by (1). The 

oscillatory flow velocity amplitude changes for every 

Reynolds number. 

 

Because the vertical walls are isolated, a zero gradient patch 

is assigned to the outlet boundary for the velocity field. To 

guarantee that the cylinder can move in the y-line, the so-called 

movingWallVelocity provided by OpenFOAM is assumed as a 

boundary condition of velocity. This means that the boundary 

is allowed to move. Slip plane are used in the top and bottom of 
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the domain to indicate that there are no physical walls in these 

borders, so viscous effects on the border are negligible. At the 

inlet domain and at the cylinder border, zero gradient is 

assumed. A 0 fixed value is assigned at the outlet pressure field. 

Finally, the boundary condition of the front and back side of the 

domain is set as empty since the flow is simulated as two 

dimensional. 

III. MODEL VALIDATION 

In order to guarantee an accurate solution, the model is 

setting up at values of Reynolds and Keulegan Carpenter well 

studied in the literature (e.g. [27], [29], [22], [30]). In this way, 

𝑅𝑒 = 200 and 𝐾𝐶 = 10 in an oscillating fluid flow passing 

around the circular cylinder were selected. For the mass spring 

system, the parameters selected are mass ratio 𝑚 ∗ equal to 4/𝜋, 

the damping ratio 𝜁 equal to 0.01 and reduce velocity 𝑉𝑟 = 5. 

Fig. 3 shows the computational mesh comprising 15600 cells 

and 31720 points stablished after refined the mesh looking for 

a good resolution. A 20% expansion ratio is used to refine the 

cells near the cylinder. The minimum mesh radius size is 

0.006D.  

 

The drag and lift coefficients time history and the Strouhal 

number are analyzed, considering 20 vortex shedding periods 

once the periodic flow is stablished. These values have been 

compared with published results ( [22], [30], [31]) and shown 

in Table I.  

 

 
Fig. 3.  Computational mesh domain used for the simulation around the 

cylinder 
 

The drag coefficient (mean value of the in-line non-

dimensionalized force) and the Strouhal number, 𝑆𝑡  =
𝑓𝑣𝐷/𝑈𝑚, are obtained from the frequency of vortex shedding  

𝑓𝑣, which is calculated with the period measured from velocity 

time history. At 𝑅𝑒 = 200 and 𝐾𝐶 = 10, 𝐶𝐷̅ is equal to 1.331 

and 𝑆𝑡  is equal to 0.192, meaning that the vortex natural 

frequency shedding is  𝑓0 =0.192. Results are in good 

agreement with those published in the literature (see Table I). 

 
TABLE I.  

Comparison of drag force coefficient (𝑥̅ = 1,307, 95% CI [1.281, 1.332]) and 

Strouhal number (𝑥̅ = 0,193, 95% CI [0.187, 0.198]) at 𝑅𝑒 = 200 and 𝐾𝐶 =
10 

 𝐶𝐷̅ 𝑆𝑡 

Guilmineau and Queutey (2002) 1.286 0.195 

Cao et al. (2010) 1.300 0.186 

Cao and Li (2015) 1.343 0.191 

Present work 1.331 0.192 

Additional support is given by the good agreement of the 

numerical based approach presented in this paper with 

experimental validation data provided by Riveros et al. [24] and 

discussed below. 

IV. RESULTS AND DISCUSSIONS 

The results of direct numerical simulation are present in this 

section considering the effect of 𝐾𝐶 = 7,9 and Reynolds values 

equals to 40, 100, 150, 200, 250, 300, 500 and 1000. In this 

work, the regimes are defined from the flow structure and force 

behavior. 

A. Drag and lift force coefficients 

Drag and lift coefficients time histories in an oscillating flow 

are estimated using force coefficients function library by 

OpenFOAM. Vortex shedding frequencies and Strouhal 

numbers obtained for different Reynolds values are shown in 

Fig. 4. The time history frequencies are verified for both drag 

and lift coefficients in order to obtain the vortex shedding 

frequency (𝑓𝑣), using the Fast Fourier Transform method (FFT) 

[29].  

 

 
Fig. 4.  Vortex shedding frequencies (circle) and Strouhal numbers (square) 
by Reynolds number 

 

The dominant frequency corresponds to the oscillating 

frequency. The results are in agreed with the coefficients 

behavior shown in Figs. 5-6. The drag force coefficients for  

𝑅𝑒 = 200 and 𝑅𝑒 = 1000 are shown in Fig.  5. Notice that both 

figures do not present significant change period along the time.  

 

Conversely, the amplitude presents some variations, 

specially at higher Reynolds values. The pase lag between the 

oscillating flow and drag coefficient for 𝑅𝑒 = 200 is about 40° 

and the behavior is sinusoidal as the oscillatory flow, with 

constant period along the time. On the other hand, for 𝑅𝑒 =
1000 the pase lag is about 20° as show in Fig.  5(b). The 

variation of the peaks shape in Fig. 5(b) is related to the pressure 

distribution asymmetry in the flow direction. Both, the 

oscillatory flow and drag force coefficient frequencies are 

similar as can be seen in Fig. 5. It is possible to identify this 

behavior in all the evaluated Reynolds in this work. 

 

The variation of drag force coefficient as a function of 

Reynolds number is presented in Fig. 6. When the Reynolds 

number increases the mean drag coefficients decreases which, 

for previous studies, is an expected behavior (e.g. [32]). 
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(a) 

 
(b) 

 

Fig. 5.  Drag force coefficient for (a) 𝑅𝑒 = 200 and (b) 𝑅𝑒 = 1000 

 

 
Fig. 6.  Variation of drag force coefficient with Reynolds number for fluid 
flow around a circular cylinder. 

 

 

Lift force coefficients for Reynolds 200 and 1000 are 

visualized in Fig. 7. Two positive and two negative peaks along 

the time history of lift coefficient for each period of oscillating 

flow are identified, meaning that the lift force frequency is 

twice the oscillating fluid frecuency. Sometimes is posible to 

observe up to 3 positive and negative peaks of lift force 

coefficient per oscillating period. The pressure distribution is 

not symmetric in the flow direction because the vortex shedding 

are not formed at the same time. Thus, the lowest Reynolds 

numbers presents less variation in amplitude and frequency 

parameters. Conversely, higher Reynolds showed significant 

variations, especially in fluctuation amplitude (Seeing Fig. 7).  

 
(a) 

 
(b) 

 

Fig. 7. (a) Lift force coefficient for 𝑅𝑒 = 200 and (b) 𝑅𝑒 = 1000 

 

B. Oscillating flow analysis 

The flow over a circular cylinder for different Reynolds 

values are simulated. The Fig. 8 to 15 show behaviors in 

differents times for cases when 𝑅𝑒 ranges are between 40 and 

1000. It is possible to notice that vortices remains with the 

acceleration and deceleration of flow. Fig. 8 presents a fixed 

pair of vortices in the wake. The vortices are symetric about the 

center line of the wake, which fits the Williamson regimen A 

description [5]. When the sinusoidal velocity is positive, two 

vortices are formed as shown in Fig. 8(a). The flow change its 

direcction in Fig.  8(b) and two new vortices developed in the 

opposite direction. Four vortices persist during a half vortex 

shedding period along the time, one pair for each direction. This 

is because the low sinusoidal flow velocity remains attached to 

the cylinder, as shown in Fig. 8(d). 

 

Instability develops when Reynolds value is incremented as 

shown in Fig. 9(a). Two vortices are developed in the direction 

flow, describing a symmetrical V-pattern regimen at the cross-
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flow direction. Here, the last two vortices from the past cycle 

persist until the flow change of direction. In Fig. 9(b) the 

vortices move in opposite direction describing the same pattern. 

Again, the last two vortices from Fig. 9(a) persists. Fig. 9(c)(d) 

represent the second half of cycle equal to the first. About three 

pair of vortices persists during a half of vortex shedding period. 

This case goes according to the Fig. 1 by Tatsuno & Bearman 

[13], regimen D behavior. 

 

 

 

When Reynolds value increase (𝑅𝑒 > 100), positive 

(anticlockwise) and negative (clockwise) vortex stars to 

shedding around the cylinder due to the oscillating flow. The 

V-pattern symmetrical regimen persists in 𝑅𝑒 = 150 case but 

with intermittently changes as shown Fig. 10. Fig. 10(a) for 

example, describes a transverse street because the vortex moves 

in cross-flow direction.  In the opposite direction, Fig. 10(b)(d) 

present an oblique street. Although V-pattern is present in Fig. 

10(c), the predominant vortex tends to move  

transversally in negative direction. For this Reynolds value, is 

more evident the persistent pair of vortices from the last phase. 

 
 

 

  

 

  

(a) (b) (a) (b) 

  

 

  
(c) (d) (c) (d) 
 

Fig. 8.  Vorticity profile for KC=7.9 and 𝑅𝑒 = 40  at differents times 
illustraing a symmetric pattern (a) t=80,62, (b) at t=81,14T, (c) at t=81,66T, 

and (d) at t=82,18T. Arrows indicate the vortices convected directions. 

 

  

Fig. 9.  Vorticity profile for KC=7.9 and 𝑅𝑒 = 100  at differents times 
illustraing a V-pattern (a) t=100.23T, (b) at t=100,73T, (c) at t=101.22T, and 

(d) at t=101,71T. Arrows indicate the vortices convected directions 

 

 

 

 

 

  

 

  
(a) (b) (a) (b) 

  

 

  
(c) (d) (c) (d) 

 

Fig. 10.  Vorticity profile for KC=7.9 and 𝑅𝑒 = 150  at different times 
illustraing a double pair regimen (a) t=76,47T, (b) at t=76,95T, (c) at 
t=77,44T, and (d) at t=77,93T. Arrows indicate the vortices convected 

directions 

 
 

  

Fig. 11.  Vorticity profile for KC=7.9 and 𝑅𝑒 = 200  at differents times 
illustraing a double pair regimen (a) t=90,39T, (b) at t=90,88T, (c) at t=91,38T, 
and (d) at t=91,87T. Arrows indicate the vortices convected directions. 
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Between three and four pairs of vortices are possible to see in 

each half of vortex shedding period for this Reynolds value. 

For high Reynolds values, more vortices endure in a cycle. 

Vorticity field for the case of  𝑅𝑒 = 200  are shown in Fig. 11. 

Three pair of vortices can visualized in Fig. 11 (a), one pair 

from the present half of cycle and the others from the past cycle. 

On the rigth cylinder, two pair of vortices are sheddding. This 

pattern is known as doble pair regimen of Williamson [5]. The 

same situation is shown in Fig. 11(b)-(c), where two pair of 

vortices are presented in the direction of flow along the time. Is 

important to note that V-pattern are stabilized in this Reynolds 

value, where the vortices developed in a symetric way on both 

sides of the cylinder. 

 

The regimen F is evident in Fig. 12 for 𝑅𝑒 = 250 because 

the same two pairs of vortices are shedding, and a traverse 

vortex street is formed around the cylinder in an oblique street. 

About six vortices around the cylinder are visualized every half 

of vortex shedding period, as can be seen in Fig. 12(a)-(b). 

 

With the increase in the Reynolds value, a regimen instability 

appears during the time history. Fig. 13(a) presents a V-pattern 

characteristic of regimen F at Reynolds 300. Later, a drastic 

change is observed in Fig. 13(b), where a transverse street is 

appearing. At 67,91T V-pattern symmetrical is visualized in 

right-left direction. Finally, an oblique street is present at 

71,87T. This Reynolds value is classified by Williamson [5] as 

regimen G, but transverse street is not the most persistent 

behavior. The pattern is chaotic with four different behaviors 

visualized.  

 

Vorticity field for 𝑅𝑒 = 500 can visualized in Fig. 14. Two 

well-defined vortices are highlighted in Fig. 14(a) with another 

vortex lags from past cycles. Here, a V-patter is visible. Fig. 

14(b) shows five vortices around the cylinder. Two of them 

from the present cycle. In this case, an oblique street is 

visualized. A transverse pattern is representative for Fig. 14(c), 

where about two pair of vortices can be identified. Six vortices 

going in right-left direction, presenting a V-pattern symmetrical 

in Fig. 14(d), which is a characteristic of regimen D.  The vortex 

structure of 𝑅𝑒 = 500 case corresponds to mode G where 

transverse Street is characterized. Nevertheless, this is not a 

dominant pattern for the case.  

 

Fig. 15(a) shows two pair of vortices detaching from the 

cylinder, two vortices developed in the past cicle and the  

traces of others past vortices shedded. A transversal street 

characterized is visualized at 90,48𝑇. In Fig. 15b) three pair of 

vortices are presented, two of them from the past cycle. A V-

pattern around the transverse axis is visualized here. The flow 

goes from the right to the left (negative direction) in Fig. 15(c) 

where about five vortices are present. The main two vortices are 

shed describing an oblique street at 96,83𝑇. In the same 

direction, Fig. 15(d) shown a V-pattern symmetrical in oblique 

direction.  

 

Is important to highlight in a half cycle between 9 and 10 

vortices staying around the cylinder, a behavior related to the 

regime G of Williamson [5] classification. However, a chaotic 

slant vortex street is developed left and right of the cylinder 

without persistent vortex pattern observed along the time for 

this Reynolds value. 

 

C. Temporal force analysis 

The semi-empirical equation (3) estimate the in-line force on a 

cylinder divided in two forces: 1) The drag force, proportional 

to the flow instantaneous velocity square and 2) the inertial flow 

coupled with the local flow acceleration [31]. The drag force 

coefficient 𝐶𝑑 and the inertial force coefficient 𝐶𝑚 can be 

 

 

 

  

 

  
(a) (b) (a) (b) 

  

 

  
(c) (d) (c) (d) 
 

Fig. 12.  Vorticity profile for KC=7.9 and 𝑅𝑒 = 250  at differents times 
illustraing a double pair regimen (a) t=60,27T, (b) at t=60,80T, (c) at 

t=61,29T, and d) at t=61,84T. Arrows indicate the vortices convected 
directions 

 

  

Fig. 13.  Vorticity profile for KC=7.9 and Re 300 at differents times illustraing 

a V-pattern a) t=61,48T, transverse street b) at t=63,37T,  V-pattern symetrical 
c) at t=67,91T, and oblique street d) at t=71,87T. Arrows indicate the vortices 

covected directions. 
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obtained by last square fifting on the time history of 𝐹𝑜𝑠𝑐, or 

calculated using the equations below [33]. 

 

 

 𝐶𝑑 =
3

4
∫

𝐹𝐷 sin 𝜃

𝜌𝐷𝑈1
2 𝑑𝜃

2𝜋

0
=

3

8
∫ 𝐶𝐷 sin 𝜃 𝑑𝜃

2𝜋

0
         (4) 

𝐶𝑖 =
2𝑈1𝑇𝑓

𝜋3𝐷
∫

𝐹𝐷 cos 𝜃

𝜌𝐷𝑈1
2 𝑑𝜃

2𝜋

0
=

𝑈1𝑇𝑓

𝜋3𝐷
∫ 𝐶𝐷 cos 𝜃 𝑑𝜃

2𝜋

0
       (5) 

 

Where, 𝐶𝐷 represents the mean drag coefficient.  

 

According to Cao and Li [31], the time history of drag force 

can be acceptably approximated by Morrison’s equation. Using 

the same equations is possible to obtain the cross-flow force. 

Fig. 16 shows an interval of in-line and cross-flow forces for 

every Reynolds value studied. 

The drag and the inertial forces share a direct relation with the 

vortex behavior as shown in Fig. 16. A uniform in-line force 

with almost constant frequency and period can visualized in 

Fig. 16(a). As presented before, this regimen A does not 

exhibits vortex detachment, but it does shows a vortex 

formation totally symetric in the direction of the flow. This is 

why in-line force predominates and the trasnverse force is 

almost null.  

 

A representative regimen D is showed in Fig. 16(b), where 

the V-pattern symmetrical starts to dominate and the cross-flow 

force becomes important. The symmetric pattern becomes 

predominant when the cross-flow force amplitude reduces. The 

fluctuation force classify this case of Reynolds value in a 

symmetric regime group. The 𝑅𝑒 = 150 case present and 

amplitude instability due the irregular vortex shedding in Fig. 

16(c). After a while, the fluctuations tends to become regular 

and the in-line force is stabilizes. Here regimen E is 

predominant with intermitently changes of direction, related 

with the fluctuating amplitude in-line force because the action 

of cross-flow force. When cross-flow force present a peak, 

vorticity pattern tends to be transversal street as can be idenified 

in Fig. 10(a) at 76,47T. 

 

For 𝑅𝑒 =  200, an amplitude stability is presented and 

persist at the time (Fig. 16(d)). In the same way, the 𝑅𝑒 =  250 

present a regular fluctuation force (Fig. 16(e)). Also, cross-flow 

force present uniform behavior for both Reynolds (200 and 

250). As mentioned previously, Reynolds case 200 and 250 are 

dominated by regimen F. In-line force for 𝑅𝑒 =  200 tends to 

be more stable in comparison with 𝑅𝑒 =  250 which means the 

first one present vortex shedding more  

symmetrical about the cross-flow axis while the second one 

tends to be more transversal. In this way, the proximity to the 

transition range is a bit evident for 𝑅𝑒 =  250.  
 

For case of Reynolds 300, 500 and 1000, in-line and cross-

flow forces are chaotic and strong peaks appear (see Fig. 

16(f)(g) and (h)). A chaotic behavior is observed here because 

there are no persistent vortex pattern. Sometimes,  the dominant 

harmonic for the case of 𝑅𝑒 =  1000 are three times the 

frequency of oscillating fluid flow, but predominates two times 

the oscillating frequency. On the other hand, flow regime is 

dominated by the viscous drag component in all the cases. 

 

D. Spectral analysis 

Several oscillating fluid flow frequencies peaks that are 

integral times the vortex oscillating frequency, are illustrated in 

Fig. 17 and Fig. 18. These figures were taking from time history 

of drag force and lift force coefficients respectively, using Fast 

Fourier Transform (FFT). The oscillating frequencies are 

graphed with the magnitude of the Fourier Transform, using the 

main peak as indicated Williamson [5]. Spetral analysis of drag 

force is shown in Fig. 17 with several peaks at frequencies. The 

main frequency are always the oscillating frequency and the 

 

 

 

  

 

  
(a) (b) (a) (b) 

  

 

  
(c) (d) (c) (d) 
 

Fig. 14. Vorticity profile for KC=7.9 and Re 500 at differents times 

illustraing a V-pattern a) t=61,48T, oblique street b) at t=63,37T, transverse 
pattern c) at t=67,91T, and V-pattern symetrical d) at t=71,87T. Arrows 

indicate the vortices covected directions.  

 

  

Fig. 15. Vorticity profile for KC=7.9 and Re 1000 at differents times illustraing 

a transverse pattern a) t=90,48T, V-ppattern b) at t=91,27T, oblique street c) at 
t=96,83T, and V-pattern symetrical in oblique direction d) at t=97,95T. Arrows 

indicate the vortices covected directions.  
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other peaks has an increment factor, namely 3𝑓0, 5𝑓0, 7𝑓0 and in 

that way forward (see Fig. 17(a)(b)(c)), for regimes A, D, E and 

F. Besides of the main frequency and the 3𝑓0 peak, other 

frequencies peaks without multiple of 𝑓0 appear in regimen G.   

 

 

It is possible to note, the oscillating frequencies for 𝑅𝑒 < 200 

(see Fig. 4) are twice the main frequency of lift coefficient. As 

  
(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

  
(g) 

 

(h) 

Fig. 16. In-line and cross-flow forces for a) 𝑅𝑒 40, b) 𝑅𝑒 100, c) 𝑅𝑒 150, d) 𝑅𝑒 200, e) 𝑅𝑒 250, f) 𝑅𝑒 300, g) 𝑅𝑒 500 and h) 𝑅𝑒 1000. 
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shown in Fig. 18(a)(b), for regimes A and E respectively, the 

main frequencies occur with an increment of 2𝑓0.  

  

 

 

 

  
(a) (b) 

  
(c) (d) 

 
Fig. 17. Spetral analysis of drag force coefficient at a) Re 100, b) Re 150, c) Re 250, d) Re 1000. 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 17. Spetral analysis of drag force coefficient at a) Re 100, b) Re 150, c) Re 250, d) Re 1000. 
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Otherwise, the dominant frequency for regimen F (Fig. 18(c)) 

is three times the oscillating frequency. In this case, the case of 

Reynold value 250 presents main frequency at 3𝑓0 and the 

increment is about 1𝑓0 in the other peaks of frequencies. The 

same behavior for these regimens is shown by Duclercq et al. 

[16]. Again, for Reynolds values higher than 300 the oscillating 

frequencies are two times the main frequency of lift coefficient. 

Note that the main frequency in Fig. 18(d), is presented around 

of 2𝑓0. Them appear other frequencies peaks without a clear 

multiple of 𝑓0 and strong fluctuations is observed, according to 

Fig. 16(f)-(h). Williamson [5] concluded that in an oscillating 

flow, the dominant frequency of lift force is equal to one plus 

the number of vortices shedding in a half period, which is 

evidenced in the regimes A, D and F. However, for regimen G 

this condition is not fulfilled as proved in this study.  

 

E. Experimental validation 

Riveros et al. [24] conducted a series of forced oscillation 

experiments for flexible risers where a 20-meter riser model 

was tested for different values of 𝑅𝑒 and 𝐾𝐶 numbers; their  

experimental model case 1 has the same diameter as 𝑅𝑒 (1000) 

and 𝐾𝐶 (7,9) numbers presented here in Fig. 15. Although good 

agreement was reported by Riveros et al. [24], it is still possible 

to observe some deviations between the simulation results and 

experimental data in the main cross-flow frequency. The model 

presented in this paper, as shown in Fig. 18(d), overcomes this 

difficulty providing a value of the dominant cross-flow 

frequency in good agreement with the experimental value of 1 

Hz presented by Riveros et al. [24]. Likewise, the dominant 

inline-flow frequency presented in the experimental model by 

Riveros et al. [24] is 4,9 Hz, the same visualized in Fig. 17(d) 

using the numerical model. 

V. SUMMARY 

A numerical based approach for predicting the response 

cylindrical system considering low mass damping ratio and 

under oscillatory flow was presented in this paper. Numerical 

simulations of showed a inverse relationship between the 

Reynolds number and the mean drag coefficients, an expected 

behavior [24], also demostrated that the peaks shape variation 

is related with a pressure distribution asymmetry in the flow 

direction, due to  asinchrony in the vortex shedding. Thus, the 

lowest Reynolds number, the less variation in amplitude and 

frequency parameters and conversely, the higher Reynolds 

numbers produces significant variations, especially in 

fluctuation amplitude. 

 

At Reynolds value 40, four vortices, one pair for each 

direction, persist during a half vortex shedding period because 

the low sinusoidal flow velocity remains attached to the 

cylinder. In this way, a uniform in-line force with almost 

constant frequency and period is present. This behaviour have 

a good agreement to the Williamson regimen with vortex 

symmetric formation in the flow direction which explains why 

the in-line force predominates and the cross-flow force is 

almost null. Instability develops when Reynolds value is 

incremented to 𝑅𝑒 = 100. Two vortices describing a transverse 

symmetrical V-pattern regimen develops in the flow direction, 

and two vortices from the past cycle persist until the flow 

reverses. Three pair of vortices persists during a half of vortex 

shedding period. This is conforms to Tatsuno & Bearman 

regimen D behavior, where a symmetrical V-pattern began to 

develop and the cross-flow force becomes important. 

 

As the Reynolds value increases (𝑅𝑒 > 100), positive 

(anticlockwise) and negative (clockwise) vortex began to shed 

from the cylinder due to the oscillating flow, and more vortex 

endures a cycle. The V-pattern symmetrical regimen persists in 

the 𝑅𝑒 = 150 case because changes intermittently from a 

transverse street to oblique street vortex. The persistence of the 

vortex pairs from the last phase is longer and between three and 

four pairs of vortices are visible in each vortex shedding half 

period. An amplitude instability is present due irregular vortex 

shedding, after a while, the fluctuations becomes regular and 

the in-line force stabilizes. Here regimen E is predominant with 

intermittently changes of direction, related with the fluctuating 

amplitude in-line force because the action of cross-flow force, 

this conforms to Tatsuno & Bearman.  

 

The vorticity field for the case of  𝑅𝑒 = 200 has three pair of 

vortex one pair from the present half of cycle and two from the 

past cycle, a Williamson double pair regimen develops and the 

V-pattern are stabilized. For 𝑅𝑒 = 250 two pair of vortices are 

shedding and a traverse vortex street is formed around the 

cylinder in an oblique street. About six vortex around the 

cylinder can be seen every vortex shedding half period. Both 

Reynolds values show a regular fluctuation force and also, the 

cross-flow force present uniform behavior. In-line force for 

𝑅𝑒 =  200 tends to be more stable in comparison with  𝑅𝑒 =
250, so  𝑅𝑒 = 200 shows  vortex shedding more symmetrical 

about the cross-flow axis while the second one tends to be more 

transversal. In this way, the proximity to the transition range is 

evident for  𝑅𝑒 = 250. Both cases are conform to Tatsuno & 

Bearman regimen F behavior. 

 

Regimen instability appears as the Reynolds value increases. 

For Reynolds 300, a regimen F V-pattern characteristic is 

developed, however drastic changes are observed, where a 

transverse street began to appear and later an oblique street is 

developed. This Reynolds value is classified by Williamson [5] 

as regimen G, but transverse street is not the most persistent 

behavior. The pattern is considered chaotic (but may be 

transitional F-to-G) and four different behaviors were 

visualized.  

 

Two well-defined and several others vortex lagging from 

past cycles are visible at 𝑅𝑒 = 500. A V-pattern is developed 

with transformations to oblique street to transverse pattern. The 

vortex structure of 𝑅𝑒 = 500 case was classified by Tatsuno 

and Bearman as regimen G where transverse street is 

characteristic, however, there is not dominant pattern for this 

case. About seven vortex around the cylinder can be seen every 

vortex shedding half period.  

 

Two pair of vortices detaching in an oblique street from the 

cylinder, two vortices remaining form the past cicle and traces 

of several others vortices shredded in previous cycles are visible 
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at 𝑅𝑒 = 1000. Characteristic transversal street and a V-pattern 

around the cross-flow axis is evident. At each half cycle, 

between 9 and 10 vortices stay around the cylinder, a behaviour 

typical of Williamson regime G, however, a chaotic slant vortex 

street is developed left and right of the cylinder without 

persistent vortex pattern observed along the time. About nine 

vortex around the cylinder can be seen every vortex shedding 

half period 

 

For the Reynolds cases 300, 500 and 1000, in-line and cross-

flow forces are chaotic and strong peaks appear. This chaotic 

behavior is present because there are no persistent vortex 

patterns. The dominant harmonic for the case of 𝑅𝑒 =  1000 

sometimes is three times higher than the oscillating fluid flow 

frequency, but two times the oscillating frequency. The flow 

regime is dominated by the viscous drag component in all these 

cases. Finally, the numerical results presented in this paper for 

the dominant in-line and cross-flow frequency shows good 

agreement with experimental results provided by Riveros et al. 

[24]. 
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