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Abstract—Models of series-parallel (SP) photovoltaic (PV) 

arrays focus on the system of nonlinear equations that represents 

the array’s electrical behavior. The solution of the system of 

nonlinear equations can be posed as an optimization problem and 

solved with different methods; however, the models do not 

formulate the optimization problem and do not evaluate different 

optimization algorithms for its solution. This paper proposes a 

solution, using global optimization algorithms, of the 

mathematical model that describes the electrical behavior of a SP 

generator, operating under uniform and partial shading 

conditions. Such a model is constructed by dividing the generator 

into strings and representing each module in the string with the 

single-diode model. Consequently, for each string a system of 

nonlinear equations is build applying the Kirchhoff’s laws, where 

the unknowns are the modules’ voltages. The solution of the 

resulting nonlinear equation system is posed as an optimization 

problem, where the objective function is defined as the sum of the 

squared of each nonlinear equation. Minimum and maximum 

values of each voltage are defined from the datasheet information 

of the modules and bypass diodes. As a demonstrative example, 

we arbitrarily select two well-known algorithms to solve this 

problem: Genetic Algorithms and Particle Swarm Optimization. 

Simulation results show that both algorithms solve the 

optimization problem and allow the reproduction of the 

generator’s characteristic curves. Moreover, the results also 

indicate that the optimization problem is correctly defined, which 

opens the possibility explore other optimization algorithms to 

reduce the computation time. 

 

Index Terms––Global optimization; Partial Shading; 

Photovoltaic Arrays; Series-Parallel. 
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Resumen—Los modelos de arreglos fotovoltaicos (FV) en serie-

paralelo (SP) se enfocan en el sistema de ecuaciones no lineales 

que represental comportamiento eléctrico del arreglo. La 

solución del sitemas de ecuaciones se puede plantear como un 

problema de optimización y resolverse con diferentes métodos; 

sin embargo, los modelos no formulan el problema de 

optimización y no evaluan diferentes algoritmos de optimización 

para su solución. Este artículo propone una solución, utilizando 

algoritmos de optimización global, del modelo matemático que 

describe el comportamiento eléctrico de un generador 

fotovoltaico en serie-paralelo, que opera bajo condiciones 

uniformes y de sombreados parciales. Dicho modelo se construye 

dividiendo el generador en cadenas y representando cada módulo 

en la cadena con el modelo de diodo-único. En consecuencia, para 

cada cadena se construye un sistema de ecuaciones no lineales 

aplicando las leyes de Kirchhoff, en donde las incógnitas son los 

voltajes de los módulos. La solución del sistema de ecuaciones no 

lineales resultante se plantea como un problema de optimización, 

donde la función objetivo se define como la suma del cuadrado de 

cada ecuación no lineal. Los valores mínimos y máximos de cada 

voltaje se definen a partir de la información de la hoja de datos 

de los módulos y de los diodos de derivación. Como ejemplo 

demostrativo, se seleccionaron arbitrariamente dos algoritmos 

bien conocidos para resolver este problema: Algoritmos 

Genéticos y Optimización por Enjambre de Partículas. Los 

resultados de simulación muestran que los dos algoritmos ambos 

algoritmos resuelven el problema de optimización y permiten la 

reproducción de las curvas características del generador. 

Adicionalmente, los resultados también indican que el problema 

de optimización se definió correctamente, lo cual abre la 

posibilidad de explorar otros algoritmos de optimización para 

reducir el tiempo de cómputo. 

 

Palabras claves—Arreglos Fotovoltaicos; Optimización Global; 

Serie-Paralelo, Sombreado Parcial. 

I. INTRODUCTION 

 

HOTOVOLTAIC (PV) generators have established as one 

of the most important renewable energy source, since the 

energy source is available almost everywhere, is free and 

inexhaustible. Moreover, PV generators do not emit 

greenhouse gases, do not have mobile parts and are modular, 

which allows implementing PV generators from a few watts to 

MW [1], [2]. These and other advantages have contributed to 
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the continuous increment of the installed PV capacity. Just in 

2017, 98 GW were installed around the world to reach a 

global installed capacity of 402 GW, approximately [3], [4]. 

PV generators transform the sunlight energy into electrical 

power through PV cells. These cells are connected in series to 

form modules, which are characterized by a protection diode 

named bypass diode. In turn, one or more modules connected 

in series form a PV panel, which is the commercial unit used 

to form the PV generators. A PV generator is typically formed 

by PV panels connected in series to form strings, in order to 

reach the voltage levels required by a particular application. 

Finally, two or more strings are connected in parallel to supply 

the power required by the load [1], [2]. This particular 

arrangement of PV panels is denominated Series-Parallel (SP) 

configuration and it is the most widely adopted in different 

applications [1], [2]. 

When all the modules in the PV generator are the same and 

they operate under the same conditions, i.e., all of them 

receive the same irradiance and their cells have  the same 

temperature, it is said that the PV generators operates in 

uniform or homogeneous conditions [1], [2], [5]. In these 

conditions the bypass diodes of the PV modules are inactive; 

therefore, the current vs. voltage (I-V) has a single knee, 

which produces a single Maximum Power Point (MPP) in the 

power vs. voltage (P-V) curve. However, in real applications 

the PV modules in a generator may operate under different 

irradiance and temperature conditions due to the shadow 

produced by surrounding objects (like trees, poles, buildings, 

etc.), soiling of some modules, aging, or manufacturing 

tolerances in the cells of the modules. These operating 

conditions are denominated non-homogeneous or mismatching 

conditions and they may significantly reduce the power 

produced by a PV generator [2], [6], [7]. The maximum 

current of a PV module, i.e., the short-circuit current (𝐼𝑠𝑐), is 

proportional to the effective irradiance on the module surface. 

Hence, the short-circuit current of a PV module operating 

under mismatching conditions (𝐼𝑠𝑐,𝑚) is less than the short-

circuit current of a PV module under uniform conditions 

(𝐼𝑠𝑐,𝑢). In a string, a mismatched PV module may be connected 

in series with other modules operating in uniform conditions. 

When the string current is less than 𝐼𝑠𝑐,𝑢 and 𝐼𝑠𝑐,𝑚, the bypass 

diodes of all the modules are inactive and all the modules 

deliver power. Nevertheless, when the string current is greater 

than the 𝐼𝑠𝑐,𝑚 and less than 𝐼𝑠𝑐,𝑢, the bypass diode of the 

mismatched module is active to allow the flow of the 

difference between the string current and 𝐼𝑠𝑐,𝑚. When a bypass 

diode is active, the PV module does not deliver power to the 

string and the voltage across its terminals is approximately 

zero [2], [6], [7]. In general, the activation or deactivation of 

the bypass diodes in a PV generator depend on its operating 

point (current and voltage) and the mismatching conditions of 

the PV modules. Such activation and deactivation of the 

bypass diodes produce multiple knees in the generator’s I-V 

curve and, as consequence, multiple MPPs in the generator’s 

P-V curve, where one of them is the global MPP (GMPP) and 

the rest are local MPPs (LMPPs) [2], [6], [7].  

Accurate mathematical models of PV arrays operating 

under uniform and mismatching are important for different 

applications in PV systems. They can be used to estimate the 

power and energy produced by a PV generator, to perform 

realistic economic analysis PV systems, to evaluate the 

performance of MPP tracking (MPPT) techniques, to propose 

model based reconfiguration techniques, to implement PV 

array emulators and other applications of PV systems [2], [8]. 

A model of a PV array, under uniform or mismatching 

conditions, needs to calculate the array current for a given 

voltage, since the array voltage is fixed by the power converter 

to which it is connected. From this calculation it is possible to 

reproduce the generator’s I-V and P-V curves or to perform 

dynamic simulations of the PV array [2]. In the literature there 

are different models of SP arrays, which are focused on the 

procedure to define the set of nonlinear equations to represent 

the strings and arrays [9]–[14]. However, these methods do 

not analyze the details of the numerical methods or the 

optimization strategies to solve those systems of nonlinear 

equations. In SP configurations, each string can be analyzed 

independently because all of them are connected in parallel, 

hence, the strings’ voltages are the same and correspond to the 

array voltage [9]–[14]. Some authors have defined a system of 

nonlinear equations by applying the Kirchhoff’s current law in 

each node of the string  [9], [10]. Therefore, a string with 𝑁 

modules and one blocking diode is described by a system of 

𝑁 +1 nonlinear equations. Reference [9] has introduced an 

explicit description of the Jacobian matrix associated to each 

string and mention that it needs to be inverted to solve the 

system of nonlinear equations by using Newton-Raphson 

method. Nevertheless, the authors have not mentioned the 

numerical method used to solve the nonlinear equation system. 

The inverse of the Jacobian matrix associated to a string can 

be explicitly defined by using the Schür complement, as 

introduced by [11]. Such a definition reduces the calculation 

burden of the Newton-Raphson method and the simulation 

time. However, such a method requires a guess solution 

sufficiently close to the real one in order to solve the system of 

nonlinear equations. This condition is difficult to fulfill in a 

PV string due to the voltages of a PV module vary depending 

on the string operating point (i.e., string voltage). A solution 

for this problem is presented by [11], where the authors use a 

damped Newton-Raphson method and provide complex 

procedure to define the guess solution. Research of [10] 

proposed a modeling procedure that reduces the complexity of 

the nonlinear equation system of a string. On the one hand, 

they represented each PV module by its ideal representation, 

i.e., disregarding the ohmic losses (series resistance) and 

leakage currents (parallel resistance). On the other hand, the 

authors implemented a method to calculate the inflection 

points in the string I-V curve, which are associated with the 

activation and deactivation of the bypass diodes in the 

modules. Then, it was possible to reduce the number of 

equations that represent a string because the modules with 

active bypass diodes are neglected. Although [10] proposed an 

explicit definition of the Jacobian matrix associated with the 

reduced system of nonlinear equations, they used Newton-

Raphson method to find the solution and they do not provide 

guidelines or a procedure to define the guess solution. Authors 

of [12] presented a system of nonlinear equations to model SP 

arrays, as well as other configurations, formed by six panels 

with two modules each. The authors defined a fixed set of 

nonlinear equations for each configuration by using the 



Scientia et Technica Año XXV, Vol. 25, No. 01, marzo de 2020. Universidad Tecnológica de Pereira 16 

Kirchhoff’s current and voltage laws. Such a system of 

nonlinear equations is solved by Trust-Region optimization 

method. However, the authors did not define the optimization 

problem, and they did neither justify the selection of this 

solution method nor analyze other optimization methods. 

Nevertheless, there are other models for SP array available in 

literature [13], [14] focused on reproducing the I-V and P-V 

curves of the array. But those models did not pose a system of 

nonlinear equations that represents the electrical behavior of 

an SP array and, as a result, they do not require solving a 

system of nonlinear equations. Instead, they calculated the I-V 

curve of each module and constructed the I-V curve of the 

array by operating (i.e., adding or multiplying) the modules’ 

curves, which is not practical if the operating conditions are 

continuously changing. 

This paper introduces a numerical alternative to solve the 

nonlinear system of equations that describes the electrical 

behavior of a SP array. The solution of such a system of 

equations is posed as an optimization problem, and it is solved 

by using two widely used global optimization algorithms, i.e., 

Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO). The performance of the algorithms was evaluated for 

such arrays, where the Root Mean Squared Error (RMSE) of 

the solutions were compared with the electrical 

implementation of a SP array in multiple tests. Moreover, the 

effectiveness of the algorithms to solve a small and a large 

array is evaluated by using number of evaluations of the 

objective function in multiple runs of the Global Optimization 

Algorithms (GOAs). The rest of the paper is organized as 

follows, Section 2.1 introduces the model of an SP array, 

Sections 2.2 details the mathematical foundations of the 

optimization problem, Section 2.3 presents the global 

optimization algorithms used to solve the problem, Section 2.4 

introduces the methodology, Section 3 contains the results and 

Section 4 closes the paper with the conclusions. 

II. MATERIALS AND METHODS 

This section introduces the model of Series-Parallel PV 

arrays, the mathematical foundations to transform the model 

solution into an optimization problem and the definition of the 

optimization problem proposed in this paper. Moreover, this 

section also includes the general descriptions of the two 

optimization algorithms used. 

A. Model of series-parallel photovoltaic arrays  

An SP array is formed by one or more strings connected in 

parallel, as shown in Fig. 1. Thus, each string is formed by 

two or more modules connected in series and a blocking diode 

to avoid inverse current through the string. Moreover, the 

number of modules in a string depends on the voltage required 

by the load and the number of strings depends on the power to 

be supplied.  

All the strings in an SP array are connected in parallel, 

therefore, they can be analyzed independently because each 

one forms an electric loop with the array voltage. Such a 

condition implies that each string can be represented by a 

system of nonlinear equations, where the unknowns are 

voltages of the modules and the blocking diode, and the array 

voltage is considered known because it is fixed by the power 

converter where the PV array is connected to. Then, the string 

current can be simply calculated by using the voltage of one 

module in the string and the array current is calculated by 

adding the currents of all the strings. 

The following subsections describe the electrical model of 

each PV module and the system of nonlinear equations of one 

string as well as the calculation of the string and array 

currents. 

 

 
Fig. 1. Definition of a PV array in Series-Parallel configuration with M strings 

and N modules per string. 

 

1) Electrical model of a PV module 

A PV module is composed by Ns PV cells connected in 

series with a bypass diode (BD) connected in parallel to 

protect the cells, as shown in Fig. 2 (left); where the current 

source (𝐼𝑝ℎ) represents the current generated by the 

photovoltaic effect, the diode (𝐷) introduces the nonlinear 

behavior of the 𝑃𝑁 junctions of the PV cells, resistance 𝑅ℎ 

describes the leakage current between the 𝑃𝑁 junction, and 𝑅𝑠 
includes the ohmic losses produced by the semiconductor-

metal contacts and the cables. In literature, there are other 

electrical models of a PV modules [2]. Nevertheless, the 

single-diode model (SDM) (see Fig. 2) is the most widely 

adopted because it provides a trade-off between complexity 

and accuracy. 

Applying the Kirchhoff current law (KCL) at one terminal 

of the PV module it is possible to obtain the module output 

current (𝐼) from the currents through 𝑅𝑠 (𝐼𝑅𝑠) and diode BD 

(𝐼𝑏𝑑), as shown in (1). In turn, 𝐼𝑅𝑠 is defined in terms of 𝐼𝑝ℎ 

and the currents through diode 𝐷 (𝐼𝑑) and 𝑅ℎ (𝐼𝑅ℎ), as 

described by (2). Currents 𝐼𝑑, 𝐼𝑅ℎ and 𝐼𝑏𝑑 depend on the 

module voltage (𝑉) as introduced in (3), (4) and (5), 

respectively, where 𝐼𝑠𝑎𝑡 and 𝐼𝑠𝑎𝑡,𝑏𝑑 are the inverse saturation 

current of diodes 𝐷 and 𝐵𝐷, respectively, and 𝑉𝑡,𝑑 and 𝑉𝑡,𝑏𝑑 
are proportional to the thermal voltages of diodes 𝐷 and 𝐵𝐷, 
respectively. 

The last two parameters are defined as follows: 𝑉𝑡,𝑑=

𝑁𝑠𝜂𝑘𝑇/𝑞 and 𝑉𝑡,𝑏𝑑=𝜂𝑏𝑑𝑘𝑇/𝑞, where 𝜂 and 𝜂𝑏𝑑 are the 

ideality factors of diodes 𝐷 and 𝐵𝐷, respectively, 𝑘 is the 

Boltzmann constant, 𝑞 is the electron charge, and 𝑇 is the 
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temperature of the PV cells and the bypass diode, which are 

assumed equal [15], [16].  

𝐼=𝐼𝑅𝑠+ 𝐼𝑏𝑑 
(1) 

𝐼𝑅𝑠= 𝐼𝑝ℎ−𝐼𝑑+𝐼𝑅ℎ 
(2) 

𝐼𝑑=𝐼𝑠𝑎𝑡.(exp(
𝑉+(𝐼−𝐼𝑏𝑑)𝑅𝑠

𝑉𝑡,𝑑
) −1) 

(3) 

𝐼𝑅ℎ=
𝑉+(𝐼−𝐼𝑏𝑑)𝑅𝑠

𝑅ℎ
 

(4) 

𝐼𝑏𝑑=𝐼𝑠𝑎𝑡,𝑏𝑑.(exp(
−𝑉

𝑉𝑡,𝑏𝑑
)−1) 

(5) 

 

Combining (1)-(5), it is possible to obtain a single 

expression that describes the relation between the module 

current (I) and voltage (V ) in a single expression, as shown in 

(6), where I and V are the module variables and 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡, 𝜂, 

𝑅𝑠, 𝑅ℎ, 𝑉𝑡, 𝐼𝑠𝑎𝑡,𝑏𝑑 and 𝜂𝑏𝑑 are PV module parameters. On the 

one hand, the parameters of the Ns PV cells (𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡, 𝜂, 𝑅𝑠 

and 𝑅ℎ) can be obtained from the electrical characteristics of 

the PV module’s datasheet, by using some methods reported 

in literature ([17], [18]), and they vary with the irradiance (𝐺) 

and 𝑇 . On the other hand, the parameters of the bypass diodes 

can be estimated from the forward voltage and current, in a 

given operation point, provided in the bypass diode’s 

datasheet. 

𝐼=𝐼𝑝ℎ−𝐼𝑠𝑎𝑡(exp(
𝑉+(𝐼−𝐼𝑏𝑑)𝑅𝑠

𝑉𝑡,𝑑
)−1)

−
𝑉+(𝐼−𝐼𝑏𝑑)𝑅𝑠

𝑅ℎ
+𝐼𝑏𝑑 

(6) 

It is worth noting that (6) is an implicit and nonlinear 

function, where 𝐼 can be solved for a given value of 𝑉 by 

using the LambertW function or numerical methods [9]. Using 

the LambertW function (𝑊) it is possible to express 𝐼 as a 

function of 𝑉 as shown in (7), where 𝐼𝑏𝑑 is defined in (5). 

𝐼(𝑉)= 
𝑅ℎ(𝐼𝑝ℎ+𝐼𝑠𝑎𝑡)−𝑉

𝑅𝑠+𝑅ℎ
−
𝑉𝑡,𝑑
𝑅𝑠
𝑊(𝜃)+𝐼𝑏𝑑 

𝜃=
𝑅𝑠𝑅ℎ

𝑉𝑡,𝑑(𝑅𝑠+𝑅ℎ)
𝐼𝑠𝑎𝑡(exp(

𝑅𝑠𝑅ℎ(𝐼𝑝ℎ+𝐼𝑠𝑎𝑡)+𝑉

𝑉𝑡,𝑑(𝑅𝑠+𝑅ℎ)
)) 

(7) 

 

2) Calculation of the string current 

To calculate the current of a string, it is necessary to 

determine the voltage of all the modules and the blocking 

diode. Then, string current is calculated by replacing voltage 

of any module into (6). For a string with 𝑁 modules and one 

blocking diode (see Fig. 2), there are 𝑁+1 unknown 

voltages, i.e., the voltages from module one (𝑉1) to module 

𝑁 (𝑉𝑁) and the voltage of the blocking diode (𝑉𝑁+1). 
Therefore, the system of 𝑁+1 nonlinear equations is 

obtained by applying the KCL and the Kirchhoff voltage law 

(KVL). The KCL is applied to each node in the string (see Fig. 

2) to obtain N equations. The last equation comes from the 

application of KVL to the loop formed by the string and the 

array voltage (𝑉𝑎𝑟𝑟𝑎𝑦), which is known. 

The system of nonlinear equation (𝐹) is shown in (8), where 

𝑉  is the vector formed by the 𝑁+1 unknown voltages, 𝐼𝑖(𝑉𝑖) 
is the current of module 𝑖 as function of its voltage (𝑉𝑖) 
according to (7), and 𝐼𝑏𝑙𝑘 (𝑉𝑁+1)  is the current of the blocking 

diode as function of its voltage as show in (9). The parameters 

𝐼𝑠𝑎𝑡,𝑏𝑙𝑘 and 𝑉𝑡,𝑏𝑙𝑘 correspond to the inverse saturation current 

and thermal voltage of the blocking diode, which can be 

obtained from the diode’s datasheet. 

𝐹(𝑉)=

[
 
 
 
 
 
 

𝐹(1)=𝐼1(𝑉1)−𝐼2(𝑉2)=0

𝐹(2)=𝐼1(𝑉1)−𝐼3(𝑉3)=0
⋮

𝐹(𝑁−1)=𝐼1(𝑉1)−𝐼𝑁(𝑉𝑁)=0

𝐹(𝑁)=𝐼1(𝑉1)−𝐼𝑏𝑙𝑘(𝑉𝑁+1)=0

𝐹(𝑁+1)=𝑉1+𝑉2+⋯+𝑉𝑁+𝑉𝑁+1−𝑉𝑎𝑟𝑟𝑎𝑦]
 
 
 
 
 
 

 (8) 

 

 
Fig. 2. Single-diode model of a PV module (left). Definition of a string with 𝑁 
modules and one blocking diode (right). 

 

𝐼𝑏𝑙𝑘(𝑉𝑁+1)=𝐼𝑠𝑎𝑡,𝑏𝑙𝑘.(exp(
−𝑉𝑁+1
𝑉𝑡,𝑏𝑙𝑘

)−1) (9) 

The unknown voltages are obtained by solving 𝐹(𝑉 ),  
then, the string current can be calculated by evaluating (7) for 

any module or evaluating (9) for 𝑉𝑁+1, because all the 

modules and the blocking diode are connected in series and, as 

consequence, they have the same current. In this paper the 

string current is calculated by evaluating (9), since it is simpler 

than (7), as shown in (10). 

𝐼𝑏𝑙𝑘(𝑉𝑁+1)=𝐼𝑠𝑎𝑡,𝑏𝑙𝑘(exp(
−𝑉𝑁+1
𝑉𝑡,𝑏𝑙𝑘

)−1) (10) 

 

3) Calculation of the array current 

Considering a SP array formed by M parallel connected 

strings, then the array current is calculated as shown in (11) 

according to [2], [9], [19]. It is worth noting that the current in 

a string is independent of the other strings, hence each string 

current can be calculated independently, which allows the 

model implementation by using parallel computing [20]. 

𝐼𝑎𝑟𝑟𝑎𝑦=∑ 𝐼𝑠𝑡𝑟,𝑘

𝑀

𝑘=1

 
(11) 
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B. Mathematical foundations 

1) Transforming the problem 

In this section, we describe how to transform the solution of 

a system of nonlinear equations into an optimization problem, 

which can be solved through global optimization algorithms. 

Definition 1 (Real roots finding problem). Let ℝ be the 

set of real numbers and let 𝕏 be a non-empty subset of ℝ𝑛, say 

𝕏⊂ℝ𝑛. Then, let us consider the following system of 

equations: 

{

𝑓1(𝑥 )=0

𝑓2(𝑥 )=0
⋮

𝑓𝑚(𝑥 )=0

 (12) 

since 𝑥  ∈ ℝ𝑛 and 𝑓𝑖∶𝕏 → ℝ,∀ 𝑖=1,2,…,𝑚.  Therefore, 

let the problem be established as: the designing and 

implementation of an algorithm to find all solutions in the set 

𝕏 for the system in (12). In other words, an algorithm to find 

all 𝑎  ∈ 𝕏 such that 𝑓𝑖(𝑎 )=0,∀ 𝑖=1,2,…,𝑚. 

 

2) Minimization 

Definition 2 (Direct image). Let 𝕏,𝕐 be sets, 𝔸 ⊆ 𝕏 be a 

subset, and 𝑓∶ 𝕏 → 𝕐 be a function. Define the direct image 

of 𝔸 under 𝑓 as the set 𝑓 [𝔸]∶= {𝑓 (𝑥 )∶ 𝑥  ∈ 𝔸}. Notice that 

𝑓 [𝔸] ⊆ 𝕐 for all 𝔸 ⊆ 𝕏. 

Theorem 1. Let 𝕏,𝕐 be sets and 𝑓∶ 𝕏 → 𝕐 be a function. 

Suppose {𝑋𝑎}𝛼∈𝐽 is a collection of subsets of 𝕏. Then, 

𝑓[⋃ 𝕏𝛼
𝛼∈𝐽

]=⋃ 𝑓[𝕏𝛼]

𝛼∈𝐽

 (13) 

where ∪𝛼∈𝐽 is the well-known union operator for a finite set 

collection. 

Definition 3 (Minimization). Let 𝕏,𝕐 be sets, 𝑎  ∈ 𝕏 and 

𝑓∶ 𝕏 → 𝕐 be a function. If 𝕐 is a totally ordered set, then it 

is said that 𝑓 attains its minimum along 𝕏 in 𝑎  iff  𝑓 (𝑎 )≤
𝑓 (𝑥 ) for all 𝑥  ∈𝕏. 

 

3) Equation’s systems and optimization 

This subsection shows the theorem about the relationship 

between a system of equations in real numbers and an 

optimization problem. 

Definition 4 (Sum of squares). Consider the problem stated 

in Definition 3. Let 𝑓:𝕏→ℝ++  be a function given by 

𝑓(𝑥 ):=∑ [𝑓𝑖(𝑥 )]
2

𝑚

𝑖=1

,with 𝑥  ∈ 𝕏. (14) 

Notice that 𝑓 is well-defined, plus its image along 𝕏 consists 

of non-negative real numbers. 

Thereupon, given 𝑓(𝑥 )≥0 for all ˙𝑥  ∈ 𝕏 and ℝ is a 

totally ordered set, there exists the infimum of 𝑓[𝕏] over ℝ, 

and besides this infimum is non-negative, 𝑖𝑛𝑓{𝑓[𝕏]} ≥ 0. 

Hence, if exists the minimum of 𝑓 over 𝕏, this minimum must 

be non-negative. Moreover, if the system in (12) has solution 

in domain given by 𝕏, the minimum of f over 𝕏 exists and it is 

zero; that is proved as follows: 

 
PSEUDOCODE 1. Methodology for finding system’s roots using an 

optimization technique 

Input: System of equation (12) and the set 𝕏. 

Output: Point �⃗⃗� ∈𝕏. 

1: Built f using (14). 

2: Minimize f over 𝕏. 

3: Let �⃗⃗� ∈𝕏 be a minimum point for f.  

4: if 𝒇(�⃗⃗� )=𝟎, then �⃗⃗�  fulfills (12);  

    else, the system in (12) has no solution in 𝕏. end if 

 

C. Optimization algorithms 

1) Genetic algorithms (GA) 

It was formally presented by Holland in 1975 as the 

canonical algorithm, opening doors to a complete family of 

computational models inspired in evolutionary processes, such 

as the natural selection [21]. For a given objective function 

from an optimization problem, GA searches its solution 

through three basic operators well-settled in the literature, i.e., 

inheritance, cross-over, and mutation. The basic idea consists 

of making each new generation (the off-springs) better than its 

parents by selecting their most positive features but 

considering the chance of abruptly modifying (mutating) them 

[22]. This algorithm has been implemented in a huge number 

of practical applications since its appearance [23]. There are at 

least one hundred thousand documents related to Genetic 

Algorithms in Scopus’s database. Pseudocode 2 displays a 

basic implementation for GA. It utilizes the Stochastic 

Universal Sampling (SUS) technique as the Selection function 

for choosing parents [24]. Subsequently, the Elitism, 

Crossover and Mutation procedures are contemplated for the 

next generation creation. For the Elitism process, a portion 

(𝑀𝑒≤𝑀) of the total population 𝑀 survives to the next 

generation based on its fitness values. For Crossover 

procedure, a fraction 𝐶𝑓∈[0,1] of the remaining next 

generation is created by combining pairs of parents, 𝑀𝑐=

⌈𝐶𝑓(𝑀−𝑀𝑒)⌉. The offsprings’ final portion (𝑀−𝑀𝑒−𝑀𝑐) 

is completed via the Mutation procedure, which consists of 

randomly perturbing the individuals’ solutions [25]. In this 

work, the conventional scattered crossover function and the 

Gaussian random distribution are considered for the last 

mentioned two procedures, respectively. 

 
PSEUDOCODE 2. Genetic Algorithm (GA). 

Input: 𝒇: ℝ𝑫→ℝ,𝑴>𝟐,𝑴𝒆∈(𝟎,𝑴),𝑪𝒇∈[𝟎,𝟏],𝑵≫𝟏, and stopping 

criteria 

Output: �⃗⃗� ∗
𝒏 

1: Initialize 𝖝𝟎 as the first generation, and make 𝒏←𝟎 

2: repeat 

3:      Perform the Selection procedure.  

4:      Perform the Elitism procedure. 

5:      Perform the Cross-over procedure.  

6:      Perform the Mutation procedure.   

7:      Find �⃗⃗� ∗
𝒏+𝟏 and Make 𝒏←𝒏+𝟏 

8: until (n < N) & (any stopping criterion is not reached) 

 

2) Particle Swarm Optimization (PSO) 

It was proposed by [26], based on their study carried out 

about the social behavior of some animal groups in food 

searching activities. Unlike other evolutionary computing 

techniques, PSO is well-known cooperative and sharing 

information with neighboring particles. This global 

optimization heuristic method has been considered into a vast 

number of applications [27]. Another important fact is related 

to the manner its particles’ positions and velocities are updated 

via two basic but powerful equations. Then, the new position 
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(𝑥 𝑚
𝑛+1 ∈𝔵𝑛+1) and velocity (𝑣 𝑚

𝑛+1∈ 𝔙𝑛+1) for the 𝑚-th 

particle are obtained with 

𝑥 𝑚
𝑛+1= 𝑥 𝑚

𝑛+𝑣 𝑚
𝑛+1  

(15) 

and, 

𝑣 𝑚
𝑛+1=𝑤𝑣 𝑚

𝑛+𝜙1𝑟 1⊙(𝑥 𝑚,∗
𝑛 −𝑥 𝑚

𝑛)+𝜙2𝑟 2⊙(𝑥 ∗
𝑛−𝑥 𝑚

𝑛) (16) 

where 𝜔 ∈ (0,1] is the inertial factor; 𝜙1 and 𝜙2 are the self 

and swarm confidence coefficients, respectively; 𝑟 1 and 𝑟 2 are 

vectors of i.i.d. random variables with 𝑈(0,1); and 𝑥 ∗
𝑛 and 

𝑥 𝑚,∗
𝑛  are the best position found by the entire swarm or 

population and by the 𝑚-th particle, respectively. 

Consequently, it is possible to describe the iterative procedure 

which forges the PSO method as Pseudocode 3 shown 

 
PSEUDOCODE 3. Particle Swarm Optimization (PSO). 

Input: 𝒇: ℝ𝑫→ℝ,𝑴>𝟐,𝒖∈(𝟎,𝟏),𝝓𝟏+𝝓𝟐>𝟒,𝑵≫𝟏, and stopping 

criteria. 

 Output: �⃗⃗� ∗
𝒏 

1: Initialize 𝖝𝟎 and 𝖁𝟎, and make 𝒏←𝟎 

2: Fine �⃗⃗� ∗
𝒏 and �⃗⃗� 𝒎,∗

𝒏  

3: repeat 

4:      Determine 𝖝𝒏+𝟏 with (15) 

5:      Find  �⃗⃗� ∗
𝒏+𝟏 and �⃗⃗� 𝒎,∗

𝒏+𝟏 

6:      Make 𝒏←𝒏+𝟏 

7: until (n < N) & (any stopping criterion is not reached) 

 

D. Methodology  

For all simulations we used an Apple MacBook Pro 

computer and the commercial numerical platform Mathworks 

Matlab. Pseudocode 1 was implemented to solve (8) by 

employing Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO). To avoid unpractical solutions, the 

inequality constraints for string’s currents (𝐼𝑠𝑡𝑟,𝑘≥0) were 

considered into a modified version of (14) with an added 

penalty function [28]. The resulting objective function to be 

minimized was 

𝑓𝑜𝑏𝑗(𝑥 )≔∑ [(𝐹𝑘(𝑥 ))
2
+(max{0,−𝐼𝑠𝑡𝑟,𝑘(𝑥 )})

2
]

𝑀

𝑘=1

. 
(17) 

Tune parameters employed for GA were 𝑀=50𝐷, 𝑀𝑒=2 

and 𝐶𝑓=0.8, and for PSO were 𝑀=min{100,10𝐷}, 𝜑1=

𝜑2=1.49 and 𝜔∈[0.1,1.1]. Furthermore, three 

demonstrative examples, varying the number of modules and 

irradiance distribution, were carried out. 

In this article, the PV panel considered for the simulated 

generator was the ERDM 85, which is formed by one module 

of 36 cells connected in series (𝑁𝑠=36).The generator’s main 

electrical characteristics are: 𝐼𝑠𝑐,𝑆𝑇𝐶=5.13 A, 𝑉𝑜𝑐,𝑆𝑇𝐶=
21.78 V, 𝐼𝑚𝑝𝑝,𝑆𝑇𝐶=4.8 A, 𝑉𝑚𝑝𝑝,𝑆𝑇𝐶=17.95 V, 𝛼𝐼𝑠𝑐=

0.02 %/K, 𝛼𝑉𝑜𝑐=−0.37%/K, and 𝑁𝑠=36; where the sub-

index 𝑆𝑇𝐶 indicates the Standard Test Conditions, 𝐼𝑠𝑐,𝑆𝑇𝐶 and 

𝐼𝑚𝑝𝑝,𝑆𝑇𝐶 are the short-circuit and MPP currents, respectively, 

𝑉𝑜𝑐,𝑆𝑇𝐶 and 𝑉𝑚𝑝𝑝,𝑆𝑇𝐶 are the open-circuit and MPP voltages, 

and, finally, 𝛼𝐼𝑠𝑐 and 𝛼𝑉𝑜𝑐 are the temperature coefficients of 

𝐼𝑠𝑐 and 𝑉𝑜𝑐, respectively. 

From the datasheet’s parameters it is possible to estimate 

the single-diode model parameters in STC using the method 

proposed by [17], and employing the adjustments proposed by 

[29]. The obtained parameters were: 𝐼𝑝ℎ=5.133 A, 𝜂=

1.061, 𝐼𝑠𝑎𝑡=1.184 𝜂A, 𝑅𝑠=0.186 Ω, and 𝑅ℎ=261.099 Ω. 

Moreover, the bypass diode’s parameters were calculated by 

using two points from the Microsemi SFDS1045Le3’s 

datasheet [30], obtaining 𝐼𝑠𝑎𝑡,𝑏𝑑=85.154 mA and 𝜂𝑏𝑑=
1.634. Both, the module’s and bypass diode’s parameters 

were considered the same for all the modules, with the 

exception of 𝐼𝑝ℎ, since it is proportional to the irradiance of 

each module. 

Partial shading conditions for each string were introduced 

by defining 𝐼𝑝ℎ per module, as shown 

[

𝐼𝑝ℎ,1
𝐼𝑝ℎ,2
⋮
𝐼𝑝ℎ,𝑁

]=𝐼𝑝ℎ[

𝑃𝐺,1
𝑃𝐺,2
⋮
𝑃𝐺,𝑁

]=𝐼𝑝ℎ𝑃 𝐺 
(18) 

where 𝐼𝑝ℎ,𝑖 represents the photovoltaic current of module i, 

𝑃𝐺,𝑖 is the irradiance’s proportion in STC (𝐺𝑆𝑇𝐶=
1000 W/m2) over module 𝑖 and 𝐼𝑝ℎ was defined in the 

previous paragraph. Finally, the search range for solving the 

simulated examples was stated in accordance to the 

datasheet’s information as follows: [−0.45,𝑉𝑜𝑐,𝑆𝑇𝐶] for each 

module’s voltage and [−0.45,0] for the blocking diodes’ 

voltage. 

III. RESULTS AND DISCUSSION 

In this section we include the solution of the model 

described above using GA and PSO, and the solution of the 

Equivalent Circuit Model, which was taken as a reference. 

Fig. 3 shows the simulation results for the case of three 

modules where the irradiance (solar irradiation) with 𝑃 𝐺=
[0.9,0.6,0.1]⊺. This figure plots the array current as a function 

of the array voltage. We use the solution of the equivalent 

circuit model as a reference. As observed, both algorithms 

attained the exact solution. Furthermore, Fig. 4 shows the 

array power as a function of the array voltage. The results are 

identical to those of the equivalent circuit. If we compare the 

solution of the two algorithms, we can observe that PSO 

seems to be more accurate than GA, for the present case (Fig. 

5). 

 

 
Fig. 3. Current vs. Voltage curve for the three modules array. 

 

Now, we simulate an array made of eight modules receiving 

them half of 𝐺𝑆𝑇𝐶, i.e., under homogeneous conditions; 

therefore, 𝑃 𝐺 is a vector of eight elements, where all of them 
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are 0.5. Again, both algorithms were capable to get the same 

solution (ideal) given by solving the equivalent circuit model. 

The corresponding I-V and P-V curves for the array are 

introduced in Fig. 6 and Fig. 7, respectively. Those curves 

describe the expected behavior for the two algorithms and the 

error seems negligible for the current and power calculation. 

 

 
Fig. 4. Power vs. voltage curve for the three modules array. 

 

 
Figure 5. Currents’ Errors (𝐼𝑟𝑒𝑓−𝐼𝑘) for the three modules array. 

 

 
Fig. 6. Current vs. Voltage curve for the eight modules array with 

homogeneous conditions. 

 

 
Fig. 7. Power vs. Voltage curve for the eight modules array with 
homogeneous conditions. 

 

In order to compare the solution methods, we use three 

parameters: the computational time, the RMSE (Root Mean 

Square Error) and the number of times that the objective 

function is called (F eval.), as shown in Table I. The RMSE 

compares a predicted value (from the two algorithms) and a 

known value (from the solution of the equivalent circuit 

model). As can be observed, the two population-based 

algorithms used much more time to obtain the solution than 

the reference model, but the final results are quite similar to 

those expected (indicated by the low values for the RMSE). 

The same can be concluded for the case of the number of 

times the objective function is called (F eval.). Nonetheless, 

PSO resulted to be more efficient than GA. 
TABLE I.  

MAIN SIMULATION RESULTS FOR THE CASE OF AN ARRAY MADE OF EIGHT 

MODULES WITH HOMOGENEOUS CONDITIONS 

Method Time [s] RMSE F eval. 

Reference 0.559 - - 

GA 545.1 0.0015737 9510800 
PSO 80.26 0.0050436 1737800 

 

It is worth noting that, the simulation of the equivalent 

circuit requires a circuit simulation software, where a 

modification in the PV generator size implies a modification 

and re-connection of the entire circuit. Moreover, the 

modification of the parameter values of all the modules may 

need manual modification per element in the circuit. All these 

modifications require an additional time which is not 

considered in the time reported in Table I, such a table only 

considers the time required to solve the equivalent circuit. 

Having now an array under mismatching conditions, 

which is composed of four modules with an irradiation of 

900 W/m2 and another four with 500 W/m2 (𝑃 𝐺=
[0.9,0.5,0.5,0.9,0.5,0.9,0.5,0.9]⊺), their I-V and P-V curves 

are shown in Fig. 8 and Fig. 9, respectively. For this large PV 

system, both algorithms also reached the expected solution. 

Both its form and values are the same as those obtained by 

solving the equivalent circuit model. 

 

 
Fig. 8. Current vs. Voltage curve for the eight modules array with partial 

shading conditions. 
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Fig. 9. Power vs. Voltage curve for the eight modules array with partial 

shading conditions. 

 

In Table II, we observe the same trend as before. The 

computation time of both algorithms is substantially longer to 

achieve the desired response. Nevertheless, their responses are 

good enough for any further calculation required. PSO was 

again more efficient than GA according to the number of 

evaluations of the objective function (i.e., column F eval.) and 

the calculation time. There were also a large number of 

simulations that generated results close to the solution but not 

identical. Therefore, it is important to bear in mind that they 

are algorithms that depend both on the number of particles 

used to find the global optimum, and on the parameters of 

adjustment. The greater the number of these, the longer the 

calculation time will be, and the accuracy will probably be 

better. 
 

 

TABLE II.  

MAIN SIMULATION RESULTS FOR THE CASE OF AN ARRAY MADE OF EIGHT 

MODULES WITH MISMATCHING CONDITIONS. 

Method Time [s] RMSE F eval. 

Reference 1.5659 - - 

GA 1677.4 0.012173 26453000 

PSO 231.90 0.0088845 4806000 

IV. CONCLUSIONS 

In this article, we described the main components of a 

photovoltaic generator system given emphasis to its 

mathematical representation. As stated, accurate mathematical 

models of PV arrays operating under uniform and 

mismatching conditions are important for different 

applications in PV systems. They can be used to estimate the 

power and energy produced by a PV generator, to perform 

realistic economic analysis PV systems, and many more 

practical applications. Here we proposed a numerical strategy 

based on the transformation of the problem into an 

optimization one. After the setting-up of the objective 

function, we solved it through two traditional global 

optimization algorithms, the Genetic Algorithm, and the 

Particle Swarm Optimization. As shown in the results section, 

both of them were capable to solve the problem. It was 

observed that the main drawback is their high computation 

time, but it can be alleviated, probably, by optimizing their 

codes or using a different programming language like C or 

C++. Nevertheless, it should be an interesting alternative when 

dealing with larger arrays. 

Finally, one of the main advantages of the proposed 

method is that it does not require a guess solution close to the 

real one, like Newton-Raphson, damped Newton-Raphson 

methods or other conventional numerical methods to solve 

nonlinear equation systems. In fact, this method can be 

extended to other configurations of PV generators, e.g., total-

cross tied, bridge-linked or honey-comb. 
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