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Abstract—Thanks to the asset management regulations, modern 

maintenance practices are rapidly getting a more managerial role, 

and is used to achieve savings and optimize energy use. Therefore, 

knowing at all times the status of the equipment allows for timely 

and necessary interventions that generate value to the company, 

and recover the initial conditions of them. Heat exchanger 

networks, rather than a productive asset, constitute an energy-

saving strategy, to have lower fuel costs, emission control, rational 

use of energy, etc. in the atmospheric furnaces of the crude 

distillation units, and other units that perform similar processes. 

Thus, keeping them in their best conditions, most of the time is 

necessary. In this paper, we propose a methodology for the 

diagnosis of the equipment of the network, and the maintenance 

planning justified by the energy efficiency of them and the 

economic impact of the intervention.  In addition, an indicator is 

presented to provide an economic justification for maintenance 

interventions, as well as for briefly showing the results of the 

application of maintenance mainly on efficiency and the use of the 

KPI J proposed for programming the maintenance schedule of 

some of the equipment (pilot test) of the heat exchanger network 

under study. The methodology developed uses real operation 

values, and its results provided savings up to USD 150,000. 

 

Index Terms— Crude distillation unit, efficiency centered 

maintenance, preheat train, rational usage of energy, refineries. 

 

 

Resumen—Gracias a las normativas de gestión de activos, Las 

practicas modernas de mantenimiento están asumiendo cada vez 

un rol más gerencial, y siendo usadas para lograr ahorros y 

optimizar el uso de la energía. Así las cosas, conocer en todo 

momento el estado de los equipos mantenidos, permite realizar las 

intervenciones oportunas y necesarias que generen valor a la 

empresa, y recuperar las condiciones iniciales de los equipos o 

cercanas a estas. Las redes de intercambiadores de calor, más que 

un activo productivo, constituyen una estrategia de ahorro 

energético, en pro de tener menores costos de combustible, control 
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A continuación, se propone una metodología para el diagnóstico 

de los equipos de la red, y la planeación del mantenimiento 

justificada por la eficiencia energética de los equipos y el impacto 
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I. INTRODUCTION 

fficient use of energy becomes more important daily in 

industries [1]–[3]. , as several devices (or arrays of them) 

are implemented in processes, looking for better energy use. 

Heat exchanger networks (HEN) are arrangements of heat 

exchangers in series or parallel, which allow recovering the 

thermal energy [4] of products in a crude oil distillation unit. 

However, factors as aging, operation, properties of crude-oil, 

among others, affect the energy performance of HEN. 

Therefore, cleaning and maintenance have to take place, to 

increase energy performance [5]–[8]. 

Several studies have been conducted on HEN´s energy 

performance. However, each one of them is very specific 

regarding conditions in each location, For instance, Zubair et al. 

[7], [9] carried out a study about performance and economic 

evaluation of heat exchanger subject to fouling.  They 
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investigated fouling models found in industry and reported its 

effect on thermal performance, seeing that before the critical 

fouling level occurs, the minimal point cost happens. 

 Georgiadis et al. [5], [6] approached the problem as an 

optimization one, restricting the issue by the cost and energy 

using linear programming,  showing that the performance of the 

Heat exchanger decreases with time, and shutdown needs to be 

done for cleaning and recover it. Smaili et al. [10] attempted for 

reducing the fouling in refinery heat exchanger networks by 

using optimal strategies of cleaning throughout optimization 

algorithms. They observe that some heat exchangers affect the 

whole HEN performance more than others when their 

efficiency decreases by fouling, called “key” heat exchangers. 

Rodriguez and Smith [8] evaluated the overall heat transfer 

performance regarding heat duty, fouling resistance, among 

others, for optimizing operating conditions under the threshold 

temperature, to avoid fouling presence. They looked up that a 

mixture between cleaning schedules and modifications on 

operating conditions is needed, because, it depends on each heat 

exchanger; however, there are heat exchangers where 

modification in operating conditions, do not lead to a reduction 

in the fouling formation.  Ishiyama et al. [11] exposed the 

effects of fouling in the thermal and hydraulic performance on 

tube side in parallel shell and tube heat exchangers and 

discovered that including the desalter leads to more efficient 

scheduling. Waters et al. [12] conclude that is mandatory 

monitoring the HEN conditions (fouling specifically), to take 

the appropriate decisions in operation, maintenance, etc., when 

needed. Caputo et al. [13] attempted to optimize shell and tube 

heat exchangers through the minimization of life cycle cost. 

Likewise, other authors have evaluated the performance of 

HEN.  Wang et al. [14], Assis et al. [15], Tian et al. [4], and 

Biyanto et al. [16] among others [17]–[30], evaluated the 

performance of HEN too. 

In the following sections it is intended (a) to show the 

maintenance methodology focused on efficiency (b) to propose 

a KPI called J, which serves as an economic-energy 

justification for maintenance interventions, (c) to briefly 

present the results of the application of the maintenance based 

on efficiency and the use of the KPI J proposed. 

II. MATERIALS AND METHODS 

For developing a HEN diagnostic model, it is necessary to 

study the behavior of KPIs. We called KPIs in a HEN the heat 

duty (Q), and the effectiveness (ε) and J-indicator. Monitoring 

of these KPIs, ensure to know the real condition of each Heat 

exchanger in HEN and to take actions in the right moment. KPIs 

are time-dependent and are indirectly measured. Below are the 

models used 

A. Crude-oil Properties 

Due to the changes in crude oil temperature, is needed to takes 

models for the estimation of properties of crude oil. The models 

proposed by Polley [23] have been used in previous studies [4]; 

however, the correlations presented by Tajudin [18] fits better 

to the properties of the crude oil used in the study. The 

correlations for density, viscosity, and specific heat are shown 

in (1), (2) and (3 ) respectively, where x is the temperature in 

Celsius degrees. 

 

𝜌 = (−0.6578𝑥 + 896.84) × 0.0624279606 (1) 

𝜇 = {
16649𝑥−1.873;  24 ≤ 𝑥 ≤ 66

   8050.9𝑥−1.708; 79 ≤ 𝑥 ≤ 191

 14.356𝑥−0.014;  203 ≤ 𝑥 ≤ 344

 

 

(2) 

𝐶𝑝 = (3𝑥 + 1940) × 0.00023884589663 (3) 

 

B. KPI´s Calculation 

Kern and Seaton correlation [13], [31]–[33] presented in 

eq.(4), fits the fouling behavior of the heat exchanger in the 

study. This correlation allows only with time and an asymptotic 

value, the diagnosis, and prediction of fouling in a heat 

exchanger. 

 𝑅𝑓(𝑡) = 𝑅𝑓
∞(1 − 𝑒𝑥𝑝(−𝑡/𝜏)) (4) 

 

Where 𝜏, called decay time, is calculated empirically, taking 

into account the behavior of each heat exchanger. t is the time 

elapsed since the last maintenance in days. 𝑅𝑓
∞ is the asymptotic 

fouling resistance, which depends on the speed of the fluid, the 

diameter of the tube, etc. This value can be taken from the 

TEMA standards [33], [34, Secs. 10–29] or it can be adjusted 

for each exchanger empirically, as has been done in this study.  

To calculate the actual overall heat transfer coefficient, the 

model presented in eq.(5) is used, according to the literature 

[16], [33]. For the actual heat duty eq. (6) is used [16], [33], [35, 

p. 680]. This parameter allows to evaluate the real thermal load 

of the equipment with the current conditions, and thus be able 

to compare with the design conditions and those expected by 

the client. CLMTD is the product between the ∆𝑇𝑙𝑚 and a 

correction factor eq. (7)  [16], [33], [35, pp. 680–681]. The 

logarithmic mean temperature is showed in eq. (8) [16], [33]. 

 
 

𝑈𝑓(𝑡) =
1

1
𝑈𝑑

+ 𝑅𝑓(𝑡)
 

(5) 

 
 𝑄̇(𝑡) =  𝑈𝑓  (𝑡) × 𝐴 × 𝐶𝐿𝑀𝑇𝐷 (6) 

 
 𝐶𝐿𝑀𝑇𝐷 = 𝐹 × ∆𝑇𝑙𝑚 (7) 

 
 

∆𝑇𝑙𝑚 =
(𝑇ℎ,𝑖 − 𝑇𝑐,𝑜) − (𝑇ℎ,𝑜 − 𝑇𝑐,𝑖)

ln (
𝑇ℎ,𝑖 − 𝑇𝑐,𝑜

𝑇ℎ,𝑜 − 𝑇𝑐,𝑖
)

 (8) 

 

The heat flow calculation is then performed with the 

following equation eq. (7), where F is a correction factor, which 

is taken from the design data of each exchanger for this study. 

𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑈𝐴𝐹∆𝑇𝑙𝑚 (9) 

 

To calculate effectiveness as the ratio between the current 

heat flux and the maximum possible heat flux. According to 

Yeap et al. [1], this is the most convenient method for heat 

exchanger networks. 
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𝑄𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛(𝑇ℎ,𝑖𝑛 − 𝑇𝑐,𝑖𝑛) 

 

where: 

 

𝐶𝑚𝑖𝑛 = 𝑚̇ℎ𝐶𝑝ℎ  ↔  𝑚̇ℎ𝐶𝑝ℎ <  𝑚̇𝑐𝐶𝑝𝑐 

 ∨  𝑚̇𝑐𝐶𝑝𝑐 ↔  𝑚̇𝑐𝐶𝑝𝑐 < 𝑚̇ℎ𝐶𝑝ℎ 

 

(9) 

𝜀 =
𝑄𝑎𝑐𝑡𝑢𝑎𝑙

𝑄𝑚𝑎𝑥

 
(10) 

 

For the calculation of the KPI called maintenance 

justification, current heat flow is compared with reference  

heat flow, on the cost of the maintenance effort to recover the 

reference condition. Where Cheat lost is the cost of BTU / hr not 

transferred, and Cmaint is the sum of all costs associated with 

maintenance. 

 

𝐽 =
(𝑄𝑟𝑒𝑓 − 𝑄𝑎𝑐𝑡𝑢𝑎𝑙) × 𝐶ℎ𝑒𝑎𝑡

∑ 𝐶𝑚𝑎𝑖𝑛𝑡

 
(11) 

III. RESULTS 

 

The case is a real HEN in a crude oil distillation unit. The 

HEN is composed of fifteen heat exchangers, in a series/parallel 

combination shown in Fig. 1. Each heat exchanger in the 

network is intervened for maintenance once every year, which 

generates over-costs for unnecessary maintenance (over-

maintenance). Improvement/change of operating conditions is 

not allowed by the company in charge of the operation of the 

unit, so, this is not taken into account in the study. Thus, 

evaluation of KPI’s it is the best way to evaluate maintenance 

interventions of HEN, with the resources at hand. 

 

The Energy efficiency centered maintenance (ECM) model 

was implemented in a Computer Tool (CT) that performs the 

calculations with real-time data and can execute the procedure 

simultaneously for all the heat exchanger network exchangers 

of the crude distillation unit (Fig. 1). It allows us to evaluate the 

quality of the maintenance performed. The implementation of 

this ECM CT in previously selected exchangers is shown 

below. Fig. 2 indicates the behavior of the heat exchanger 

fouling. Fig. 3 shows a decrease in the global heat transfer 

coefficient. 

On the other hand, it can be seen in Fig. 4, as with time, the 

difference between the reference heat flow (or that expected by 

the customer), and the actual heat flow increases. It is in this 

difference that the justification of maintenance is evidenced, 

since the higher the difference, the lower the effectiveness of 

the heat exchange (Fig. 5), and the higher the costs of the fuel 

burned in the furnace. That is, to produce the same amount, 

must spend more money. 

The business management calculates how much the heat 

transfer capacity lost in the network of heat exchangers costs, 

verifies how much maintenance costs (which can result in 

different degrees of cleaning), and if It is necessary to perform 

maintenance or not. This rate (KPI) is what was previously 

 
Fig. 1.  HEN of the Crude distillation unit in study. Red lines represent the 

warming fluids, crude-oil in al cases. Blue lines represent the cooling fluids, 

them are different crude-oil products.   

  

 
Fig. 2.  Fouling resistance trend in a heat exchanger according Kern and Seaton 
correlation [13].  

  

 
Fig. 3.  Global heat transfer coefficient Trend. Yellow line reference, orange 

line actual trend. 

  

 
Fig. 4.  Difference between reference heat duty (gray line) and current heat 

flow of a heat exchanger. 
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called J. 

 

Using a criticality matrix, which was based on the proposal 

by Francisco Gonzalez [36], the maintenance engineer plans the 

intervention of each team, based on the criticality obtained. Fig. 

6 shows one of the maintenance programs carried out with this 

methodology, which achieved savings of USD 150,000. 

 

IV. CONCLUSION 

The MCE has an Economic Justification Indicator (J) that 

relates the economic-energy improvement that is achieved 

when performing maintenance taking into account the 

economic effort invested. Depending on the type of 

maintenance to be performed (its cost), a threshold must be 

chosen, from which the maintenance activity is justified. This 

must be a managerial decision, taken taking into account market 

fluctuations and company policies. 

The values of the effectiveness of the heat exchanger (ε) and 

the J Factor are used to elaborate the criticality of each 

exchanger. 

The planning of the dates of execution of the maintenance of 

each heat exchanger, from the ECM applied to the preheating 

train of the crude distillation unit constitutes a contribution in 

this specific field. The conceptual design of the ECM presented 

in this work, is feasible to apply to other equipment energy 

transformation, used in oil refineries and industry in general.  
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