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Abstract— In this work is analyzed the environment and the 

dynamics of the states for a disease within a constant and closed 

population, represented by a system of ordinary differential 

equations, in which the individual, besides having the same 

opportunity to get in contact with any other, can recover or not, 

acquiring or not immunity through time. With these defined 

guidelines, the conditions when the disease spreads over time 

between such models are compared with those represented by a 

network. As the network can be represented by an adjacency 

matrix, the dynamics in the epidemiological states depends, 

besides the conditions in their parameters of the classic models, 

on largest eigenvalue of such matrix. 

 

 Index Terms— Adjacency matrix, epidemic, epidemic threshold, 

network 𝐤-regular. 

 

Resumen—En este trabajo se analiza el entorno y la dinámica de 

los estados para una enfermedad dentro de una población 

constante y cerrada, representado por un sistema de ecuaciones 

diferenciales ordinarias, en que el individuo, además de tener la 

misma oportunidad de entrar en contacto con cualquier otro, se 

pueda o no recuperar, adquiriendo o no inmunidad a través del 

tiempo. Con estos lineamientos definidos, se compara las 

condiciones cuando la enfermedad se propaga a lo largo del 

tiempo entre dichos modelos con los representados por una red. 

Como la red puede ser representado por una matriz de 

adyacencia, la dinámica en los estados epidemiológicos depende, 

además de las condiciones en sus parámetros de los modelos 

clásicos, del valor propio más grande de dicha matriz. 
 

Palabras claves— Epidemia, grafo 𝒌-regular, matriz de 

adyacencia, umbral epidémico. 

I. INTRODUCTION 

 

HE epidemiology of viral diseases is a discipline that 

deals with the study of determinants, predictions and 

control of factors related to health and disease, as well as 
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the study of the dynamics and distribution of viral diseases in 

a population [1]. 

In order to establish the dynamics of these diseases and to 

carry out a pursuit or control to these, it is made use of 

mathematical tools, like the ordinary differential equations, 

which allows to establish relations between these behaviors by 

means of variables and parameters or factors that influence the 

development or extinction of the disease. 

There are various mathematical models that explain the 

dynamics of their epidemiological states by assuming that 

each individual has the same opportunity to come into contact 

with any other individual in the population. For example, for 

diseases such as HIV, there are two types of states: those who 

have already contracted the disease and remain infected and 

infectious to others, and those who are susceptible to 

contracting it because they are in a risk zone. This type of 

model is known as the IS model and is characterized by the 

fact that the individual acquires the virus from an infected 

person without acquiring immunity [2, 3]. Similarly, for 

diseases such as influenza, can be described by the SIS model 

[4, 5], which gives way to the individual can move from an 

infected state to susceptible and be prone to acquire the 

disease again. For diseases in which the individual acquires 

immunity are explained by SIR models [6]. 

One of the major challenges is the spread of diseases for 

people who are associated with a limited number of 

individuals in a population, as millions of people now cross 

the borders of many countries every day, increasing the 

likelihood of an epidemic or pandemic, as well as the invasion 

of ecosystems and environmental degradation that can create 

opportunities for existing and new infectious diseases. 

Therefore, one of the solutions to this difficulty is to fit an 

epidemiological model, such as the case of the IS, SIS or SIR, 

into a network when few infected individuals enter. 

Therefore, the aim of this work is to analyze the dynamics 

of SI, SIS and SIR models, adjusted or not in a network, and 

to compare the necessary conditions to locate or not the 

disease in a constant and closed population along the time. In 

order to understand this process, the following steps are 

developed: in the second section the classical SI, SIS and SIR 

models are analyzed. In the third, fourth and fifth section, the 

construction of the SI, SIR and SIS models in networks, 

respectively, is shown and an analysis of the short- and long-

term dynamics is made to determine the conditions in which 
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the disease spreads or not and to compare them with the 

conditions of the models described given in the second 

section. Similarly, construction methods are shown to 

approximate model solutions on the network due to the 

complexity of finding an analytical solution.

 

 

II. CLASSIC EPIDEMIOLOGICAL MODELS 

By assuming that the nodes and their edges in a network do 

not present variations over time, a qualitative analysis is then 

made to the main epidemiological models, represented by a 

system of ordinary differential equations, without considering 

birth or natural death rates due to disease. 

A. Model SI 

Consider a population with 𝑁 individuals, constant and 

closed over time, divided into two states, infected when in 

contact with an infected and susceptible to this. Let 𝑆(𝑡) ≥ 0 

and 𝑋(𝑡) ≥ 0 the number of susceptible and infected 

individuals, respectively, at any one time 𝑡 ≥ 0, so that                

𝑆(𝑡) + 𝑋(𝑡) = 𝑁. 

As seen in Fig. 1 grafo 𝒌-regular,, if 𝛽 > 0 represents the 

rate of infection, and by assuming that the individual has the 

same opportunity to come into contact with any other 

individual in the population, the change in 𝑋 with respect to 𝑡 
is represented by,  

 
d𝑋

d𝑡
=
𝛽𝑆𝑋

𝑁
, 

 

where 
𝛽𝑆𝑋

𝑁
 is the flow of infection between healthy and 

infectious individuals per unit of time. 

 

 
Fig. 1. Construction of (1). 

 

Since 𝑆(𝑡) + 𝑋(𝑡) = 𝑁, then change of 𝑆 per unit of time is 

given by  
d𝑆

d𝑡
= −

𝛽𝑆𝑋

𝑁
. 

 

Thus, the final model is 

 

{

d𝑆

d𝑡
= −

𝛽𝑆𝑋

𝑁
d𝑋

d𝑡
=

𝛽𝑆𝑋

𝑁
.

 (1) 

 

If 𝑠(𝑡) =
𝑆(𝑡)

𝑁
 and 𝑥(𝑡) =

𝑋(𝑡)

𝑁
 represent the fractions of 

susceptible and infected individuals at the time 𝑡 ≥ 0 

respectively, then 𝑠(𝑡) + 𝑥(𝑡) = 1 and (1) is equivalent to 

 

{

d𝑠

d𝑡
= −𝛽𝑠𝑥

d𝑥

d𝑡
= 𝛽𝑠𝑥.

 

 

(2) 

Due to the biological interest in analyzing the dynamics of 

𝑥(𝑡) since the beginning of the disease 𝑡 = 0. Consider  

𝑋(0): = 𝑋0 ≤ 𝑁 y 𝑆(0) = 𝑁 − 𝑋0 the number of infected and 

susceptible individuals, respectively, equivalent to                      

𝑥(0) = 𝑥0: =
𝑋0

𝑁
 and 𝑠(0) = 1 − 𝑥0 as initial conditions of 

(2). 
 

 

Since 𝑠(𝑡) = 1 − 𝑥(𝑡), from (2) we have 
d𝑥

d𝑡
= 𝛽𝑥(1 − 𝑥), 

(3) 

 

that is, 
1

𝑥(1 − 𝑥)

d𝑥

d𝑡
= 𝛽. 

 

(4) 

When integrating with respect to 𝑡 for both sides of (4), we 

have to  

ln (
𝑥

1 − 𝑥
)  = 𝛽𝑡 + 𝑐, 

 

where 𝑐 ∈ ℝ is a constant of integration. When considering 

𝑥(0) = 𝑥0 the particular solution of (3) en 

 

𝑥(𝑡) =
𝑥0exp(𝛽𝑡)

1 + 𝑥0(exp(𝛽𝑡) − 1)
. 

 

An important question in any epidemic is whether or not the 

infection spreads over time 𝑡 ≥ 0. In the case of propagation, 

we must determine how it develops over time or when it will 

start to diminish. Indeed, as 

lim
𝑡→∞

𝑥(𝑡) = lim
𝑡→∞

𝑥0exp(𝛽𝑡)

1 + 𝑥0(exp(𝛽𝑡) − 1)
= 1, 

 

for everything 𝑥0, 𝛽 > 0 from (2) an epidemic is shown to 

always spread and eventually infect all susceptible individuals 

if 𝑥0 > 0. However, if 𝑥0 = 0 then 𝑥(𝑡) = 0 for everything             

𝑡 ≥ 0, that is, the population will remain in a susceptible state. 

Similarly, for 𝑥0 > 0 fixed, 𝑥(𝑡) converge to 1 with a faster 

propagation speed each time 𝛽 ≫ 0 as seen in Fig.2.  
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Fig. 2. Dynamics of (2) with 𝛽 = 0.42 and 𝑥0 = 0.2. 

 

Therefore, the following result has been verified. 

Theorem 1 Let (𝑠(𝑡), 𝑥(𝑡)) ∈  ℝ+
2  a solution of (2) with       

𝛽 > 0 and initial condition (𝑠(0), 𝑥(0)) = (1 − 𝑥0, 𝑥0). Then 

𝑥(𝑡) →  1 when 𝑡 → ∞while 𝑠(𝑡) → 0 for 𝑡 → ∞, that is, 

𝑋(𝑡) → 𝑁 when 𝑡 → ∞ y 𝑆(𝑡) → 𝑁 for 𝑡 → ∞. 

B. SIR Model 

Unlike the SI model, consider that the population at the time 

𝑡 ≥ 0 is divided into three stationary, susceptible states           

𝑆(𝑡) ≥ 0, infected by the disease 𝑋(𝑡) ≥ 0 and recovered 

without acquiring the disease again 𝑅(𝑡) ≥ 0. 
In view of Fig.3 and as stated [7], suppose that the 

susceptible fraction 𝑠(𝑡) =
𝑆(𝑡)

𝑁
 which becomes an infectious 

fraction 𝑥(𝑡) =
𝑋(𝑡)

𝑁
 is proportional to the product of its 

fractions, that is, the rate of loss of the susceptible fraction is 

𝛽𝑠𝑥, where 𝛽 > 0 is the infection rate. Therefore, the change 

in the susceptible fraction 𝑠(𝑡) regarding time is given by, 

 
d𝑠

d𝑡
= −𝛽𝑠𝑥, 

 

where the negative sign represents the loss of the susceptible 

fraction. 

 

 
Fig. 3. Construction of (6). 

 

Since 𝛽𝑠𝑥 also indicates the gain rate of the infectious 

fraction, and 𝛾 > 0 represents the rate of profit of the 

recovered fraction, i.e, 𝛾𝑥 indicates the exit of the infectious 

fraction, the change of 𝑥 with respect to time is represented by  

 
d𝑥

d𝑡
= 𝛽𝑠𝑥 − 𝛾𝑥, 

 

and the equation that describes the change of the recovered 

fraction 𝑟(𝑡) =
𝑅(𝑡)

𝑁
 es, 

d𝑟

d𝑡
= 𝛾𝑥. 

 

As the total population 𝑁 was divided into three states, 

susceptible, infectious and recovered, you have to 𝑆(𝑡) +
𝑋(𝑡) + 𝑅(𝑡) = 𝑁equivalent to 𝑠(𝑡) + 𝑥(𝑡) + 𝑟(𝑡) = 1and 

therefore the model is represented by 

{
 
 

 
 
d𝑠

d𝑡
= −𝛽𝑠𝑥

d𝑥

d𝑡
= 𝛽𝑠𝑥 − 𝛾𝑥

d𝑟

d𝑡
= 𝛾𝑥.

 
 

(6) 

 

The objective is to determine the conditions in which the 

epidemic spreads or not from 𝑋(0) = 𝑋0 ≤ 𝑁, 𝑆(0) = 𝑁 −

𝑋0, and 𝑅(0) = 0, equivalent to 𝑥(0) = 𝑥0: =
𝑋0

𝑁
, 𝑠0 = 1 − 𝑥0 

and 𝑟0 = 0. 

From (6) we can be seen that 
d𝑠

d𝑡
≤ 0, that is, the susceptible 

fraction 𝑠(𝑡) will decrease as long as there are infectious 

individuals, and therefore 𝑠(𝑡) ≤ 𝑠0 for everything 𝑡 ≥ 0. 

Similarly, 
d𝑟

d𝑡
≥ 0, therefore 𝑟0 ≤ 𝑟(𝑡), for everything 𝑡 ≥ 0, if 

there are infectious individuals. 

On the other hand,  

• If 𝑠0 ≤
𝛾

𝛽
, this is 𝑠(𝑡) ≤

𝛾

𝛽
, then 

d𝑥

d𝑡
= 𝑥(𝛽𝑠 − 𝛾) ≤ 0 

and 𝑥0 > 𝑥(𝑡) → 0 when 𝑡 → ∞, this is, the fraction 

of infected people decreases. 

• If 
d𝑥

d𝑡
> 0 when 𝑡0 > 0, then 

d𝑥

d𝑡
|
𝑡=0

= 𝑥0(𝛽𝑠0 − 𝛾) >

0 if 𝑠0 >
𝛾

𝛽
. Therefore, the number of infected people 

will increase and there will be an epidemic. So, for 

some 𝑡 > 0 there will be an epidemic outbreak if 

𝑥(𝑡) > 𝑥0. 

Since the first two equations of (6) do not depend on 𝑟(𝑡), 
then 

d𝑥

d𝑠
=
𝛽𝑠𝑥 − 𝛾𝑥

−𝛽𝑠𝑥
= −1 +

𝛾

𝛽𝑠
, 

 

(7) 

which 
d𝑥

d𝑠
< 0 if 𝑠 >

𝛾

𝛽
 and 

d𝑥

d𝑠
> 0 if 𝑠 <

𝛾

𝛽
. 

By integrating (7) with respect to 𝑠, we have to 

 

𝑥(𝑠) = −𝑠 +
𝛾

𝛽
ln 𝑠 + 𝑐, (8) 

where 𝑐 ∈  ℝ is a constant of arbitrary integration. 

Considering the initial conditions 𝑥0 y 𝑠0 at (8) we have 

𝑐 = 𝑥0 + 𝑠0 −
𝛾

𝛽
ln 𝑠0, 

and therefore the dynamics of (6) on the plane (𝑠, 𝑥) in initial 

condition 𝑥(0) = 𝑥0 y 𝑠(0) = 𝑠0 is given by 

 

𝑥(𝑠) = 𝑥0 + 𝑠0 − 𝑠 +
𝛾

𝛽
ln (

𝑠

𝑠0
). (9) 
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From (9) you must 𝑥(𝑠) = −∞ y 𝑥(𝑠0) = 𝑥0 > 0which 

there is a point 𝑠∞ such that 𝑥(𝑠∞) = 0with 0 < 𝑠∞ < 𝑠0. 

Note that 
d𝑠

d𝑡
(𝑠∞, 0,1 − 𝑠∞) =

d𝑥

d𝑡
(𝑠∞, 0,1 − 𝑠∞) =

d𝑟

d𝑡
(𝑠∞, 0,1 − 𝑠∞) = 0, that is, the point (𝑠∞, 0,1 − 𝑠∞) 

corresponds to a balance of (6). 

On the other hand, the maximum number of the infectious 

fraction, at any moment of time, satisfies 
d𝑥

d𝑡
= 0 when 𝑥 ≠ 0. 

From (6) you must 
d𝑥

d𝑡
= 𝛽𝑥 (𝑠 −

𝛾

𝛽
) = 0 if 𝑠 =

𝛾

𝛽
 for 𝑥 > 0. 

When replacing the value of 𝑠 in (9) you have to 

 

𝑥max = 𝑥0 + 𝑠0 −
𝛾

𝛽
+
𝛾

𝛽
ln (

𝛾

𝑠0𝛽
) , 

as seen in Fig.4. 

 

 
Fig. 4. Function (8). 

Note that, from Fig.4, if 
𝛾

𝛽
> 1then 

𝛾

𝛽
> 𝑠0 for everything 

0 ≤ 𝑠0 ≤ 1 and so 𝑥(𝑡) → 0 when 𝑡 → ∞. Therefore, the 

following result shows the dynamics of the model (6) with 

respect to the relationship between the parameters 𝛽, 𝛾 > 0 

and its initial conditions. 

Theorem 2. Let (𝑠(𝑡), 𝑥(𝑡), 𝑟(𝑡)) ∈ ℝ+
3  a solution of (6) 

with initial condition (𝑠(0), 𝑥(0), 𝑟(0)) = (𝑥0, 1 − 𝑥0, 0). If 
𝛾

𝛽
> 1, 𝑥(𝑡) → 0 when 𝑡 → ∞. For 

𝛾

𝛽
< 1, if 𝑠0 ≤

𝛾

𝛽
 then 

𝑥(𝑡) → 0 when 𝑡 → ∞ and, if 𝑠0 >
𝛾

𝛽
 then 𝑥(𝑡) first increases 

until a maximum value is reached                                                          

𝑥max = 𝑥0 + 𝑠0 −
𝛾

𝛽
+

𝛾

𝛽
ln (

𝛾

𝑠0𝛽
) and then decreases to zero 

when 𝑡 → ∞. The susceptible fraction 𝑠(𝑡) is a decreasing 

function and the limit 𝑠∞ is the only root in (0,
𝛾

𝛽
) of the 

equation 

𝑥0 + 𝑠0 − 𝑠∞ +
𝛾

𝛽
ln (

𝑠∞
𝑠0
) = 0. 

 

Fig.5 shows the dynamics of (6) for 
𝛾

𝛽
< 1 fixed and 

various initial conditions (𝑥(0), 𝑠(0), 𝑟(0)) = (𝑥0, 1 − 𝑥0, 0). 

 
(a) 𝑠0 = 0.2 

 
(b) 𝑠0 = 0.8 

Fig. 5. Solution of (6) with 𝛽 = 0.42 and 𝛾 = 0.14. 

C. SIS Model 

This model extends the IS model by considering that 

individuals can recover but do not acquire immunity to the 

disease. In this case, consider 𝑠(𝑡) y 𝑥(𝑡) as the susceptible 

and infected fraction, respectively, at the time 𝑡 ≥ 0 y 𝑠(𝑡) +
𝑥(𝑡) = 1. 

Looking at Fig.6, the following model is proposed 

 

{

d𝑠

d𝑡
= 𝛾𝑥 − 𝛽𝑠𝑥

d𝑥

d𝑡
= 𝛽𝑠𝑥 − 𝛾𝑥,

 
 

(10) 

 

where 𝛽 > 0 is the rate of infection and γ > 0 recovery rate, 

with initial conditions 𝑥(0) = 𝑥0 y 𝑠0 = 1 − 𝑥0. 

 

 
Fig. 6. Construction of (10). 
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Since 𝑠(𝑡) + 𝑥(𝑡) = 1 for everything 𝑡 ≥ 0, the change in 

the fraction of infected people with respect to time takes the 

form of 

 
d𝑥

d𝑡
= 𝛽𝑥(1 − 𝑥) − 𝛾𝑥, 

(11) 

 

than by the method of separation of variables, with initial 

conditions 𝑥(0) = 𝑥0 y 𝑠(0) = 1 − 𝑥0, the particular solution 

of (11) is given by 

 

𝑥(𝑡) =
𝛽 − 𝛾

𝛽
[

𝑥0 exp(𝑡(𝛽 − 𝛾))

𝑥0 exp(𝑡(𝛽 − 𝛾)) + 1 −
𝛾
𝛽

]. 

 

Therefore, we have the following result, 

Theorem 3. Be (𝑠(𝑡), 𝑥(𝑡)) ∈ ℝ+
2  the solution of (10) with 

initial condition 𝑥(0) = 𝑥0 and 𝑠(0) = 1 − 𝑥0. If  
𝛽

𝛾
< 1 then 

𝑥(𝑡) → 0 when 𝑡 → ∞, which tends to disappear to 𝑡 ≥ 0. If 
𝛽

𝛾
> 1 then  

lim
𝑡⟶∞

𝑥(𝑡) = lim
𝑡⟶∞

𝛽 − 𝛾

𝛽
[

𝑥0 exp(𝑡(𝛽 − 𝛾))

𝑥0 exp(𝑡(𝛽 − 𝛾)) + 1 −
𝛾
𝛽

] =
𝛽 − 𝛾

𝛽
, 

 

and so the disease does not disappear over time. 

 

Fig.7 shows the dynamics of (10) for various conditions on 

the 𝛽, 𝛾 > 0. 

  (a) 

𝛽 = 0.42 and  𝛾 = 0.14 

 
(b) 𝛽 = 0.14 and  𝛾 = 0.42 

Fig. 7. Computer solution of (10). 

III. SI MODEL IN A NETWORK 

Consider a network between 𝑛 individuals, represented by a 

network 𝐺, where the population is represented by nodes and 

the contact between individuals is represented by edges. This 

network can be represented by an adjacency matrix 𝐴 = [𝐴𝑖𝑗] 

size 𝑛 × 𝑛 which represents the number of edges for each pair 

of nodes. 

Consider that each node 𝑖 in the moment 𝑡 ≥ 0 belongs to 

an infected state 𝑋(𝑡) by a disease or a susceptible state 𝑆(𝑡). 

That is, for a node 𝑖 arbitrary, 𝑥𝑖(𝑡) = Prob(𝑖 ∈ 𝑋(𝑡)) or                  

𝑠𝑖(𝑡) = Prob(𝑖 ∈ 𝑆(𝑡)), where 𝑥𝑖(𝑡) + 𝑠𝑖(𝑡) = 1. 

If each node 𝑖 is connected by a neighbor 𝑗, the change in 

probability of an infected node 𝑥𝑖 with respect to time is given 

by 

d𝑥𝑖
d𝑡

= 𝛽𝑥𝑖∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑠𝑗 , 
(12) 

where 𝛽𝑥𝑖(𝑡)𝑠𝑗(𝑡) is the flow of infection between the 

infected node 𝑥𝑖(𝑡) and every susceptible neighbor 𝑠𝑗(𝑡) from 

𝑖 in the moment 𝑡 ≥ 0 [8]. 

Since 𝑠𝑖(𝑡) + 𝑥𝑖(𝑡) = 1 for everything 𝑡 ≥ 0, the change in 

the probability of a node 𝑖 susceptible 𝑠𝑖 with respect to time 

is represented by  

d𝑠𝑖
d𝑡

= −𝛽𝑠𝑖∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 . 

 

Therefore, the model to be considered is 

 

{
 
 

 
 d𝑠𝑖
dt

= −𝛽𝑠𝑖∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗

d𝑥𝑖
dt

= 𝛽𝑠𝑖∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑠𝑗 ,

 (13) 
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equivalent to 

 

d𝑥𝑖
d𝑡

= 𝛽𝑥𝑖∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑠𝑗 = 𝛽𝑥𝑖∑𝐴𝑖𝑗(1 − 𝑥𝑗)

𝑛

𝑗=1

 
 

(14) 

or 

d𝑠𝑖
d𝑡

= −𝛽𝑠𝑖∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 = −𝛽𝑠𝑖∑𝐴𝑖𝑗(1 − 𝑠𝑗)

𝑛

𝑗=1

. 

 

 

(15) 

From (13) we can be seen that 
d𝑠𝑖

d𝑡
≤ 0, that is, 𝑠𝑖 is 

decreasing and converge to zero when infectious nodes exist 

𝑥𝑗 and, 𝑥𝑖 is growing and converge to one as there are 

susceptible nodes 𝑠𝑗. Therefore, the dynamic (13) is equivalent 

to the dynamic in (2). 

Analogous to the initial conditions of the classical SI model, 

suppose the disease starts with an infected node or a 𝑐 ≳ 1 of 

nodes, chosen at random, such that 𝑥𝑖(0) =
𝑐

𝑛
 and                         

𝑠𝑖(0) = 1 −
𝑐

𝑛
. 

Since 𝑥𝑖(𝑡) in (14) converge to one, the behavior of the 

system must be analyzed for a short time to determine its 

propagation speed. Indeed, if 𝑡 is close to zero, 𝑥𝑖(𝑡) ≳ 0 and 

𝑠𝑖(𝑡) ≲ 1 for 𝑛 big enough. Thus, from (14) and ignoring the 

terms of quadratic order, we have 

d𝑥i
d𝑡

= 𝛽∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 , 

 

equivalent, in matrix form, to 

 
d𝑥

d𝑡
= 𝛽𝐴𝑥, 

(16) 

 

where 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛)
𝑇. 

If 𝑥(𝑡) represented as a linear combination of the own 

vectors 𝑣𝑟 , 1 ≤ 𝑟 ≤ 𝑛 associated to the own values λ1 ≤ λ2 ≤
⋯ ≤ λn of the matrix 𝐴, this is 𝐴𝑣𝑟 = 𝜆𝑟𝑣𝑟 ,  

 

𝑥(𝑡) = ∑𝑎𝑟(𝑡)𝑣𝑟

𝑛

𝑟=1

, 
(17) 

 

where 𝑎𝑟(𝑡) are constants that depend on 𝑡, of (16) we have, 

d𝑥

dt
=∑

d𝑎𝑟
d𝑡

𝑣𝑟

𝑛

𝑟=1

= 𝛽𝐴𝑥 = 𝛽𝐴∑𝑎𝑟(𝑡)𝑣𝑟

𝑛

𝑟=1

= 𝛽∑𝑎𝑟(𝑡)𝐴𝑣𝑟

𝑛

𝑟=1

= 𝛽∑𝜆𝑟

𝑛

𝑟=1

𝑎𝑟(𝑡)𝑣𝑟 . 

 

Then, 
d𝑎𝑟
d𝑡

= 𝛽𝜆𝑟𝑎𝑟 , 

 

with particular solution 

 

𝑎𝑟(𝑡) = 𝑎𝑟(0) exp(𝛽𝜆𝑟𝑡) 
 

(18) 

By replacing (18) in (17), 

 

𝑥(𝑡) =∑𝑎𝑟(0) exp(𝛽𝜆𝑟𝑡) 𝑣𝑟

𝑛

𝑟=1

∼ exp(𝛽𝜆𝑛𝑡) 𝑣𝑛 

and therefore, it is expected that the solution 𝑥(𝑡) grows 

exponentially from short moments of time and, unlike the 

conclusions in the dynamics of the classical SI model given in 

Theorem 1, the growth 𝑥(𝑡) depends on 𝜆𝑛 and 𝛽 > 0. That 

is, if 𝛽 ≳ 0, the disease spreads more slowly if the network 𝐺 

is more dispersed, that is, if 𝜆𝑛 ≳ 0 and, for denser networks, 

this is, 𝜆𝑛 ≫ 0, the disease spreads more quickly. 

Fig.8 shows some simulations of (13), made in Matlab, in a 

network 𝑘-regular [9], i.e. with 𝑘 neighbors for each node 𝑖. 
There is evidence that the contagion spreads throughout the 

network to 𝑡 increasingly shorter as the number of neighbors 

increases. 

 
(a) 𝑘 = 3 

 

(b) 𝑘 = 15 

Fig. 8. Fraction of infected and susceptible nodes for a 

network 𝑘-regulate with 𝑥𝑖(0)  =  0.055 in all cases,                  

𝛽 =  0.42 and 𝑛 =  105 nodes. 

A. Model based on the degree of a node 

Since the model (13) cannot be solved analytically, a model 

must be fitted to approximate the solutions of the SI model in 

a network whose dynamics in which its states are explained by 

the degrees of the nodes in the network 𝐺 [8]. 

As seen in Fig.9, a network is said to have 𝐿 components if 

any 𝐿 subgraph of 𝐺, and the largest component of 𝐺 is the 

subgraph 𝐿 that has the largest number of edges. 
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Fig. 9. Components of a G-network. 

 

Since the degree of a node is given by the number of its 

neighbors, consider {𝑝𝑘} as the distribution in degrees of a 

network 𝐺, where pk is the fraction of nodes that have degree 

𝑘, and suppose that the infected nodes make contacts 

independently of each other, i.e, ∑ 𝑝𝑘
∞
𝑘=0 = 1. Consider the 

probability generating function given by 

 

𝑔0(𝑧) = ∑𝑝𝑘

∞

𝑘=0

𝑧𝑘 . 

The average grade 〈𝑘〉 is given by 

 

⟨𝑘⟩ = ∑𝑘𝑝𝑘

∞

𝑘=0

= 𝑔0
′ (1). 

 

More generally, we define the moments 

 

⟨𝑘𝑗⟩ = ∑𝑘𝑗
∞

𝑘=0

𝑝𝑘 ,  𝑗 = 1,2,⋯ ,∞. 

 

As reference [10], when a node in a network is infected, the 

infection is transmitted to every connected individual except 

the edge from which it came. Therefore, the excess grade of a 

node that is one less than the grade is used. The probability of 

reaching a node of degree 𝑘 or excess degree (𝑘 − 1), when 

following a random edge, it is proportional to 𝑘, and therefore 

the probability that a node at the end of a random edge has a 

degree of excess (𝑘 − 1) is a constant multiple of 𝑘𝑝𝑘  with 

the constant chosen to make the sum over 𝑘 of the 

probabilities is equal to 1. So the probability of a node having 

an excess of degree (𝑘 − 1) en 

𝑞𝑘−1 =
𝑘𝑝𝑘
⟨𝑘⟩

, 

where  

∑𝑞𝑘−1

∞

𝑘=1

=∑𝑞𝑘

∞

𝑘=0

= 1. 

 

This leads to a generating function 𝑔1(𝑧) for excess grade,  

 

𝑔1(𝑧) = ∑𝑞𝑘

∞

𝑘=0

𝑧𝑘 =∑𝑞𝑘−1

∞

𝑘=1

𝑧𝑘−1 =∑
𝑘𝑝𝑘
⟨𝑘⟩

𝑧𝑘−1
∞

𝑘=0

=
1

⟨𝑘⟩
𝑔0
′ (𝑧). 

 

(19) 

and the excess of medium grade, denoted by 〈𝑘𝑒〉, 

⟨𝑘𝑒⟩ =
1

⟨𝑘⟩
∑𝑘(𝑘 − 1)𝑝𝑘

∞

𝑘=1

=
1

⟨𝑘⟩
∑𝑘2
∞

𝑘=1

𝑝𝑘 −
1

⟨𝑘⟩
∑𝑘𝑝𝑘

∞

𝑘=1

=
⟨𝑘2⟩

⟨𝑘⟩
− 1 = 𝑔1

′ (1). 

 

 

(20) 

Note that 𝑔1
′ (1) > 1 in the largest component of 𝐺 if 

∑ (𝑘2 − 2𝑘)𝑝𝑘
∞
𝑘=3 > 𝑝1, that is, the largest component of 𝐺 

has fewer grade 1 connections. 

If a node 𝑖 is infected and belongs to a small component 

with few or no connections in 𝐺, the probability that the 

infected node will spread throughout the network is zero. 

Therefore, an SI model will be adjusted for a large component 

of 𝐺 such that 𝑔1
′ (1) > 1. Consider 𝑥𝑘 as the probability of a 

grade neighbor 𝑘 is infected, and the degree of excess is 

distributed according to 𝑞𝑘. Then, the average probability that 

the neighbor is infected is 

𝑣(𝑡) = ∑𝑞𝑘

𝑛

𝑘=1

𝑥𝑘(𝑡) = ∑𝑞𝑘(1 − 𝑠𝑘(𝑡))

𝑛

𝑘=0

, 
 

(21) 

 

where 𝑥𝑘 + 𝑠𝑘 = 1. 

If the node's neighbor 𝑖 is infected, the probability of the 

disease being transmitted to the 𝑖 in the given time interval is 

𝛽d𝑡. Then the total probability of transmission from a single 

neighbor during the time interval is 𝛽𝑣(𝑡)d𝑡 and the 

probability of transmission from any neighbor is 𝛽𝑘𝑣(𝑡)d𝑡 
where 𝑘 is the number of neighbors of 𝑖. Furthermore, 𝑖 is 

required to be susceptible, which occurs with probability 

𝑠𝑘(𝑡), so the final probability that 𝑖 get infected is 𝛽𝑘𝑣(𝑡)𝑠𝑘d𝑡 
[8]. Therefore, the change of 𝑠𝑘 is given by 

 
d𝑠𝑘
d𝑡

= −𝛽𝑘𝑣𝑠𝑘 , 
 

(22) 
 

with particular solution in 𝑠𝑘(0) = 𝑠0, 

 

𝑠𝑘(𝑡) = 𝑠0exp (−𝛽𝑘 ∫ 𝑣(𝑤)d𝑤
𝑡

0

). 

 

 

(23) 

If we consider  

𝑢(𝑡) = exp (−𝛽𝑘 ∫ 𝑣(𝑤)d𝑤
𝑡

0

), 
 

(24) 

(23) takes the form 

 

𝑠𝑘(𝑡) = 𝑠0[𝑢(𝑡)]
𝑘. (25) 

To calculate 𝑠𝑘 an equation must be constructed in terms of 

𝑢 without being dependent on 𝑠𝑘 as observed in (24). In effect, 

from (22) and (25) we have 

 

𝑘𝑠0𝑢
𝑘−1

d𝑢

d𝑡
=
d𝑠𝑘
d𝑡

= −𝛽𝑘𝑣𝑠0𝑢
𝑘, 

 

equivalent to 
d𝑢

d𝑡
= −𝛽𝑢𝑣. 
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When we consider that ∑ 𝑞𝑘
∞
𝑘=0 = 1, (21) is equivalent to 

 

𝑣(𝑡) = ∑𝑞𝑘(1 − 𝑠𝑘)

∞

𝑘=0

=∑𝑞𝑘(1 − 𝑠0𝑢
𝑘)

∞

𝑘=0

= 1 − 𝑠0𝑔1(𝑢). 

 

(26) 

Therefore, 

 
d𝑢

d𝑡
= −𝛽𝑢[1 − 𝑠0𝑔1(𝑢)], 

 

(27) 

is used to determine the values of 𝑢. 

Finally, to calculate the total fraction 𝑥(𝑡) of infected 

individuals in the network, is averaged over 𝑘 in this way 

 

𝑥(𝑡) = ∑𝑝𝑘𝑥𝑘(𝑡)

∞

𝑘=0

=∑𝑝𝑘(1 − 𝑠𝑘(𝑡))

∞

𝑘=0

=∑𝑝𝑘(1 − 𝑠0𝑢
𝑘)

∞

𝑘=1

= 1 − 𝑠0𝑔1(𝑢). 
 

However, the solution of (27) cannot be explicitly 

calculated, but an analysis can be made for both short- and 

long-term times. Indeed, when 𝑡 = 0, of (24) must be 𝑢(0) =
1. Then, 𝑣(𝑡) is, by definition, positive and not decreasing, of 

(24), 𝑢(𝑡) → 0 when 𝑡 → ∞. By assuming that the infection 

starts with only one or a handful of individuals, so 𝑠(0) =

𝑠0 = 1 −
𝑐

𝑛
 for some constant 𝑐 > 0, we have 𝑠0 → 1 when 

𝑛 → ∞, this implies that, in the long term, (27) it becomes 

 
d𝑢

d𝑡
= −𝛽𝑢[1 − 𝑔1(0)] = −𝛽𝑢 (1 −

𝑠0𝑝1
⟨𝑘⟩

), 

 

with general solution, 

 

𝑢(𝑡) = 𝐾exp [−𝛽 (1 −
𝑝1
⟨𝑘⟩
) 𝑡] ∼ exp [−𝛽 (1 −

𝑝1
⟨𝑘⟩
) 𝑡]. 

 

Then, the long-term behavior of 𝑢(𝑡) This is determined by 

𝑝1 because grade one nodes are the last to be infected. 

On the other hand, as 𝑢(0) = 1 y 𝑢(𝑡) is decreasing, 

consider 𝑢 = 1 − 𝜖 for short periods of time. Then, from (27), 

  

−
d𝑢

d𝑡
=
d𝜖

d𝑡
= 𝛽𝑢[1 − 𝑠0𝑔1(𝑢)], 

 

and considering that  

 

𝑔1(1 − 𝜖) = 1 − 𝑔1
′ (1)𝜖 + 𝑂(𝜖2), (28) 

we have, ignoring the terms ϵ of higher order, which 

 
d𝜖

d𝑡
= 𝛽[𝑥0 + (𝑔1

′ (1) − 1)𝜖], 
(29) 

 

where 𝑥0 = 𝑥𝑘(0) = 1 − 𝑠𝑘(0) is the initial value of 𝑥𝑘. Since 

(29) is a first-order linear equation, using the integral factor 

𝜇(𝑡) = exp(𝛽(1 − 𝑔1
′ (1))𝑡), that is, 

 

d

d𝑡
[exp(𝛽(1 − 𝑔1

′ (1))𝑡) 𝜖] = 𝛽𝑥0 exp(𝛽(1 − 𝑔1
′ (1))𝑡), 

 

and by integrating with respect to 𝑡, the general solution for 

(29) is 

𝜖(𝑡) =
𝛽𝑥0

1 − 𝑔1
′ (1)

+ 𝑐 exp(𝛽(𝑔1
′ (1) − 1)𝑡), 

 

where 𝑐 is a constant of arbitrary integration. When 

considering 𝜖(0) = 0, the particular solution of (29) is given 

by 

 

𝜖(𝑡) =
𝛽𝑥0

𝑔1
′ (1) − 1

[exp(𝛽(𝑔1
′ (1) − 1)𝑡) − 1]. 

 

Therefore, 

 

𝑢(𝑡) = 1 − 𝜖 = 1 −
𝛽𝑥0

𝑔1
′ (1) − 1

[exp(𝛽(𝑔1
′ (1) − 1)𝑡) − 1], 

 

with 𝑔1
′ (1) > 1 given in equation (20). 

Finally, for short periods of time, this is, 𝑢 = 1 − 𝜖, 

 

𝑥(𝑡) = 1 − 𝑠0𝑔1(𝑢) = 1 − 𝑠0𝑔1(1 − 𝜖)
≃ 1 − 𝑠0 + 𝑠0𝑔1

′ (1)𝜖                                                                      

= 𝑥0 [1 +
𝛽𝑔1

′ (1)

𝑔1
′ (1) − 1

[exp(𝛽(𝑔1
′ (1) − 1)𝑡) − 1]], 

where it is considered 𝑠0 = 1 and 𝑔1
′ (1) > 1 as stated in (20). 

Therefore, as expected, the initial growth of the infection is 

more or less exponential. Similarly, it is expected that 𝑥(𝑡) 
increase rapidly if 𝑔1

′ (1) ≫ 1, that is, 𝑔1
′ (1) represents how 

quickly the network branches out as it moves away from the 

node where the disease first begins. 

IV. SIR MODEL IN A NETWORK 

Consider 𝑠𝑖 = Prob(𝑖 ∈ 𝑆), 𝑥𝑖 = Prob(𝑖 ∈ 𝑋) and                        

𝑟𝑖 = Prob(𝑖 ∈ 𝑅). As it is proposed [8] and in an equivalent 

way to the construction of the classical SIR model and the SI 

model with network, the changes of 𝑠𝑖, 𝑥𝑖 y 𝑟𝑖 per unit of time 

obey the system 

 

{
 
 
 

 
 
 d𝑠𝑖
d𝑡

= −𝛽𝑠𝑖∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗

d𝑥𝑖
d𝑡

= 𝛽𝑠𝑖∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 − 𝛾𝑥𝑖

d𝑟𝑖
d𝑡

= 𝛾𝑥𝑖 ,

 

 

 

 

(30) 

where γ > 0 is the probability per unit of time that an infected 

individual will recover. In addition, consider in the instant        

𝑡 = 0, 𝑠𝑖(0) = 1 −
𝑐

𝑛
, 𝑥𝑖(0) =

𝑐

𝑛
 and 𝑟𝑖(0) = 0 [8]. 

From (30) it can be seen that 𝑠𝑖 decreases and 𝑟𝑖 grows 

when infectious nodes exist 𝑥𝑗. Therefore, and equivalent to 

the SI model in a given network in section 3, the dynamics 

must be analyzed for short time steps. If 𝑡 ≈ 0, 𝑥𝑖(0) ≈ 0 and                 
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𝑠𝑖(0) ≈ 1 when 𝑛 → ∞, and so by ignoring the infected of 

quadratic order, 
d𝑥𝑖

d𝑡
 of (30) can be approximated as 

 

d𝑥𝑖
d𝑡

= 𝛽𝑠𝑖∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 − 𝛾𝑥𝑖

= 𝛽(1 − 𝑥𝑖)∑𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 − 𝛾𝑥𝑖

=∑(𝛽𝐴𝑖𝑗 − 𝛾𝛿𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

, 

 

 

(31) 

where 

𝛿𝑖𝑗 = {
0, 𝑖 ≠ 𝑗  
1, 𝑖 = 𝑗.

 

 

In matrix form, (31) takes the form, 

 
d𝑥

d𝑡
= 𝛽𝑀𝑥, 

where 

𝑀 = 𝐴 −
𝛽

𝛾
𝐼. 

 

If 𝑣𝑟  is an eigenvector associated with the eigenvalue 𝜆𝑟 of 

the matrix 𝐴, then 

 

𝑀𝑣𝑟 = 𝐴𝑣𝑟 −
𝛽

𝛾
𝐼𝑣𝑟 = (𝜆𝑟 −

𝛽

𝛾
) 𝑣𝑟 , 

 

that is, the value of 𝑀 associated to the own vector 𝑣𝑟  in                   

𝜆𝑟 −
𝛽

𝛾
. When considering 𝑥(𝑡) as given in (17), we must 

 
d𝑎𝑟
d𝑡

= (𝛽𝜆𝑟 − 𝛾)𝑎𝑟 , 

 

with particular solution, 

 

𝑎𝑟(𝑡) = 𝑎𝑟(0) exp((𝛽𝜆𝑟 − 𝛾)𝑡). 

 

Then 

𝑥(𝑡) =∑𝑎𝑟(0)𝑣𝑟 exp((𝛽𝜆𝑟 − 𝛾)𝑡)

𝑛

𝑟=1

∼ exp((𝛽𝜆𝑛 − 𝛾)𝑡) 𝑣𝑛 . 

 

(32) 

 

If 𝛽𝜆𝑛 − 𝛾 < 0, 𝑥(𝑡) decreases exponentially to zero. On 

the other hand, if the main eigenvalue 𝜆𝑛 is small, the 

probability of infection 𝛽 > 0 must be large, or the recovery 

rate 𝛾 > 0 to make the disease start to spread, equivalent to 

verifying that 𝛽𝜆𝑛 − 𝛾 > 0. Therefore, and unlike the 

conclusions of the dynamics of the classical SIR model given 

in Theorem 2, the epidemic threshold occurs in 𝛽𝜆𝑛 − 𝛾 = 0, 

that is, 

 
𝛽

𝛾
=
1

𝜆𝑛
. 

(33) 

 

Fig.10 shows that, when fixing 𝛽, 𝛾 > 0 for a network            

𝑘-regular, 𝑥(𝑡) decreases to zero as 
𝛽

𝛾
<

1

𝑘
, where 𝜆𝑛 = 𝑘 in a 

network 𝑘-regular [11], and 𝑥(𝑡) tends to grow to a certain 𝑡0 

for 𝑘 big enough. 

 
      (a) 𝑘 = 5 

 
(b) 𝑘 = 15 

Fig. 10. Fraction of infected, susceptible and recovered nodes 

for a network 𝑘-regulate with 𝑥𝑖(0)  =  0.055 in all cases, 

𝛽 =  0.02, 𝛾 = 0.1 and 𝑛 =  105 nodes. 

A. Model based on the degree of a node 

Consider 𝑠𝑘(𝑡), 𝑥𝑘(𝑡) and 𝑟𝑘(𝑡) the odds that a neighbor 

with a degree 𝑘 is susceptible, infected or recovered, 

respectively, in a time 𝑡 ≥ 0. When considering a node 𝑖 who 

is a neighbor of a susceptible 𝑗, we have to 𝑖 contracts the 

disease from one of his neighbors other than 𝑗. Then the 

probability that 𝑖 infection is given by 𝑥𝑘with 𝑘 the degree of 

excess. So that 𝑖 recovery depends only on the probability that 

we have been previously infected, which is given by 𝑟𝑘, where 

𝑘 is the degree of excess, and the probability 𝑠𝑘 if susceptible 

can be derived from                 𝑠𝑘 + 𝑥𝑘 + 𝑟𝑘 = 1 [8]. 

Analogous to the construction of the SI model based on the 

degree of a node, the change of 𝑠𝑘, 𝑥𝑘 and 𝑟𝑘 per unit of time 

is given by 

{
 
 

 
 
d𝑠𝑘
d𝑡

= −𝛽𝑘𝑣𝑠𝑘

d𝑥𝑘
d𝑡

= 𝛽𝑘𝑣𝑠𝑘 − 𝛾𝑥𝑘

d𝑟𝑘
d𝑡

= 𝛾𝑥𝑘 ,

 

 

 

(34) 

where the average probability of a neighbor being infected is 

given by 

𝑣(𝑡) = ∑𝑞𝑘

∞

𝑘=0

𝑥𝑘(𝑡). 
 

(35) 
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If all the degrees of the nodes 𝑖 on the network 𝐺 have 

degree one, the dynamics of (34) can be expressed in an 

equivalent way as observed in Fig.5. 

To find an analytical solution to the model (34), consider 

𝑤(𝑡) = ∑𝑞𝑘

∞

𝑘=0

𝑟𝑘(𝑡), 

 

that is, the average probability 𝑤(𝑡) of the neighbors are 

recovered. 

From (34) and (35), we have to 

 

d𝑤

d𝑡
=∑

𝑑𝑟𝑘
𝑑𝑡

∞

𝑘=0

= 𝛾∑𝑞𝑘

∞

𝑘=0

𝑥𝑘 = 𝛾𝑣, 
 

(36) 

 

that is, 

𝑣 =
1

𝛾

𝑑𝑤

𝑑𝑡
, 

 

(37) 

 

that when used in (34), the change of 𝑠𝑘 with respect to time is 

written as 

 
d𝑠𝑘
d𝑡

= −
𝛽

𝛾
𝑘
𝑑𝑤

𝑑𝑡
𝑠𝑘 , 

 

equivalent to 
1

𝑠𝑘

d𝑠𝑘
d𝑤

= −
𝛽

𝛾
𝑘, 

 

and whose solution, with respect to the initial condition           

𝑠(0) = 𝑠0 for 𝑤 = 0, is 

 

𝑠𝑘 = 𝑠0 exp (−
𝛽

𝛾
𝑘𝑤). 

(38) 

 

When considering  

 

𝑢(𝑡) = exp (−
𝛽

𝛾
𝑤(𝑡)), 

 

(39) 

 

equivalent to 

 

𝑤 = −
𝛾

𝛽
ln𝑢, (40) 

 

(38) is rewritten as 

 

𝑠𝑘(𝑡) = 𝑠0[𝑢(𝑡)]
𝑘 . (41) 

 

The goal is to find an equation to calculate 𝑢(𝑡) without 

depending on the unknown variables 𝑟𝑘. In fact, when using 

(40) and (41), we have to 

 

𝑣(𝑡) = ∑𝑞𝑘

∞

𝑘=0

𝑥𝑘 =∑𝑞𝑘(1 − 𝑟𝑘 − 𝑠𝑘)

∞

𝑘=0

= 1 − 𝑤(𝑡)

− 𝑠0∑𝑞𝑘

∞

𝑘=0

𝑢𝑘                                      

= 1 +
𝛾

𝛽
ln𝑢 − 𝑠0𝑔1(𝑢), 

 

 

(42) 

 

and so on, 

 

−
𝛾

𝛽𝑢

d𝑢

d𝑡
=
𝑑𝑤

𝑑𝑡
= 𝛾𝑣 = 𝛾 [1 +

𝛾

𝛽
ln𝑢 − 𝑠0𝑔1(𝑢)], 

 

that is, 

 
d𝑢

d𝑡
= −𝛽𝑢 [1 +

𝛾

𝛽
ln𝑢 − 𝑠0𝑔1(𝑢)], 

(43) 

 

obtained from (34) and (36). Therefore, the total of the 

susceptible fraction is of the form, 

 

𝑠(𝑡) = ∑𝑝𝑘

∞

𝑘=0

𝑠𝑘 = 𝑠0∑𝑝𝑘

∞

𝑘=0

𝑢𝑘 = 𝑠0𝑔0(𝑢). 
 

(44) 

 

To find the total fraction of 𝑥𝑘, note that of (44), 

 
d

d𝑡
(exp(𝛾𝑡) 𝑥𝑘) = exp(𝛾𝑡) (

d𝑥𝑘
d𝑡

+ 𝛾𝑥𝑘) = exp(𝛾𝑡) 𝛽𝑘𝑣𝑠𝑘 , 

 

than by integrating, 

 

𝑥𝑘(𝑡) exp(𝛾𝑡) − 𝑥0 = ∫
𝑑

𝑑𝑡
(exp(𝛾𝑡) 𝑥𝑘)𝑑𝑡

𝑡

0

= ∫ exp(𝛾𝑤) 𝛽𝑘𝑣(𝑤)𝑠𝑘(𝑤)𝑑𝑤
𝑡

0

, 

 

(45) 

 

and use (41) and (42), you must 

𝑥𝑘(𝑡) = exp(−𝛾𝑡) [𝑥0

+ 𝛽𝑘𝑠0∫ exp(𝛾𝑤) [𝑢(𝑤)]𝑘 (1
𝑡

0

+
𝛾

𝛽
ln 𝑢(𝑤) − 𝑠0𝑔1(𝑢(𝑤)))𝑑𝑤]. 

 

To calculate the total recovery fraction, it is enough to see 

that 𝑟𝑘 = 1 − 𝑥𝑘 − 𝑠𝑘. 

Because many times the solution of (43) cannot be 

explicitly calculated, certain properties are used to analyze the 

behavior of 𝑢. Indeed, by assuming that 𝑠(0) = 𝑠0 = 1 −
𝑐

𝑛
, 

𝑟(0) = 0 and 𝑥(0) = 𝑥0 =
𝑐

𝑛
, we have to 𝑠0 → 1 y 𝑥0 → 0 for 

𝑛 → ∞. Therefore, from (44) we have, for 𝑡 → ∞, 

 

𝑟∞ = 1 − 𝑠∞ = 1 − 𝑔0(𝑢∞). 
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If 𝑡 = 0, from (39) we have to 𝑢(0) = 1 and                                 

ln 𝑢 = ln(1 + (𝑢 − 1)) ≃ 1 − 𝑢. Then, for moments of short 

time and given that 𝑢 is decreasing, considering 𝑢 = 1 − 𝜖, 

𝑠0 = 1, 
 

𝑔1(1 − 𝜖) = 1 − 𝑔1
′ (1)𝜖 + 𝑂(𝜖2), 

 

and ignoring the terms of ϵ of a higher order, it is known that 

(43) 

 
𝑑𝜖

𝑑𝑡
= −

𝑑𝑢

𝑑𝑡
= 𝛽(1 − 𝜖) [1 +

𝛾

𝛽
ln(1 − 𝜖) − 𝑔1(1 − 𝜖)]

≃ 𝛽(1 − 𝜖) [1 +
𝛾

𝛽
(1 − 𝜖 − 1)

− 𝑔1(1 − 𝜖)]        

= 𝛽(1 − 𝜖) [1 −
𝛾

𝛽
𝜖 − 1 + 𝑔1

′ (1)𝜖]

= 𝛽(1 − 𝜖) [−
𝛾

𝛽
𝜖 + 𝑔1

′ (1)𝜖]

= [𝛽𝑔1
′ (1) − 𝛾]𝜖. 

 

Therefore 

 

𝑢(𝑡) = 1 − 𝜖(𝑡) = 1 − exp((𝛽𝑔1
′ (1) − 𝛾)𝑡), 

 

and 

𝑠𝑘(𝑡) = 𝑢
𝑘 = [1 − exp((𝛽𝑔1

′ (1) − 𝛾)𝑡)]
𝑘

≃ 1 − exp(𝑘𝑡(𝛽𝑔1
′ (1) − 𝛾)). 

(46) 

 

Thus the epidemic threshold is given by 

 
𝛽

𝛾
=

1

𝑔1
′ (1)

=
⟨𝑘⟩

⟨𝑘2⟩ − ⟨𝑘⟩
, 

(47) 

 

with 𝑔1
′ (1) given in (20), equivalent to the epidemic threshold 

given in (33) when replacing 𝜆𝑛 by 𝑔1
′ (1). 

V. SIS MODEL IN A NETWORK 

In a way equivalent to the construction of the SI model in a 

network and the classic SIS model, the changes of 𝑠𝑖 y 𝑥𝑖 per 

unit of time are given by 

 

{
 
 

 
 d𝑠𝑖
d𝑡

= −𝛽𝑠𝑖∑𝐴𝑖𝑗𝑥𝑗 + 𝛾𝑥𝑖 ,

𝑛

𝑗=1

d𝑥𝑖
d𝑡

= 𝛽𝑠𝑖∑𝐴𝑖𝑗𝑥𝑗 − 𝛾𝑥𝑖 .

𝑛

𝑗=1

 

 
 
(48) 

 

Since 𝑠𝑖 + 𝑥𝑖 = 1, the change of 𝑥𝑖 per unit of time, given 

in (48), can be written as 

 

d𝑥𝑖
d𝑡

= 𝛽(1 − 𝑥𝑖)∑𝐴𝑖𝑗𝑥𝑗 − 𝛾𝑥𝑖 .

𝑛

𝑗=1

 
 

(49) 

 

Assuming that 𝑥𝑖(0) = 𝑥0 = 1 −
𝑐

𝑛
 for everything 𝑖 and 

constant 𝑐 ≳ 1For 𝑛 → ∞ and ignoring the terms of 𝑥𝑖 of 

higher order, of (49) must  

d𝑥𝑖
d𝑡

= 𝛽∑𝐴𝑖𝑗𝑥𝑗 − 𝛾𝑥𝑖

𝑛

𝑗=1

, 

 

 

(50) 

which is equivalent to (31). Therefore, the epidemiological 

threshold is given by 

 
𝛽

𝛾
=
1

𝜆𝑛
, 

 

that is, if 
𝛽

𝛾
<

1

𝜆𝑛
It is expected that 𝑥(𝑡) decreases 

exponentially to zero, while if 
𝛽

𝛾
>

1

𝜆𝑛
, 𝑥(𝑡) begins to grow for 

short moments of time as observed in Fig.11. 

 

 

    (a) 𝑘 = 5 

 

 (b) 𝑘 = 15 

Fig. 11. Fraction of infected nodes for a network 𝑘-regulate 

with 𝑥𝑖(0)  =  0.055 in all cases, 𝛽 =  0.02, 𝛾 = 0.1 y 𝑛 =
 105 nodes. 

A. Model based on the degree of a node 

Equivalent to the construction of the SI and SIR models 

based on the degree of a node, the change of 𝑠𝑘 y 𝑥𝑘 per unit 

of time is given by 

{

d𝑠𝑘
d𝑡

= −𝛽𝑘𝑣𝑠𝑘 + 𝛾𝑥𝑘

d𝑥𝑘
d𝑡

= 𝛽𝑘𝑣𝑠𝑘 − 𝛾𝑥𝑘 ,

 

where 

𝑣(𝑡) = ∑𝑞𝑘𝑥𝑘(𝑡).

∞

𝑘=0

 
 

(51) 
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Since 𝑠𝑘 + 𝑥𝑘 = 1, then 

 
d𝑥𝑘
d𝑡

= 𝛽𝑘𝑣(1 − 𝑥𝑘) − 𝛾𝑥𝑘 . 

 

 

(52) 

As in the SIR model based on the degree of a node, if all the 

degrees of the nodes 𝑖 on the network 𝐺 has degree one, the 

dynamics of (34) can be expressed in an equivalent way as 

observed in Fig.7. 

Because no explicit solution is known for (52), its behavior 

is analyzed when 𝑡 ≈ 0 y 𝑡 → ∞. By assuming that 𝑥𝑘(0) =
𝑐

𝑛
 

for 𝑐 constant and, for moments of small time when 𝑛 →  ∞ 

and ignoring the terms of 𝑥𝑘 of higher order, of (51) and (52) 

that 

 
d𝑥𝑘
d𝑡

= 𝛽𝑘𝑣 − 𝛾𝑥𝑘 , 

 

which corresponds to a first-order linear equation. When using 

the integral factor, we have to 

 
𝑑

d𝑡
(𝑥𝑘exp(𝛾𝑡)) = exp(𝛾𝑡)

d𝑥𝑘
d𝑡

+ 𝛾exp(𝛾𝑡)𝑥𝑘

= 𝛽𝑘exp(𝛾𝑡)𝑣, 
 

with particular solution in 𝑥𝑘(0) → 0 given by 

 

𝑥𝑘(𝑡) = 𝛽𝑘exp(−𝛾𝑡)∫ exp(𝛾𝑤)𝑣(𝑤)d𝑤.
𝑡

0

  

 

When considering 

 

𝑥𝑘 = 𝑘𝑢(𝑡), 
with  

 

𝑢(𝑡) = 𝛽exp(−𝛾𝑡)∫ exp(𝛾𝑤)𝑣(𝑤)d𝑤
𝑡

0

, 

 

 

(53) 

it is known from (51) that 

 

𝑣(𝑡) =  𝑢(𝑡)∑𝑘𝑞𝑘

∞

𝑘=0

= 𝑔1
′ (1)𝑢(𝑡) 

 

(54) 

 

The objective is to calculate 𝑢(𝑡) without being determined 

by values 𝑥𝑘. Indeed, since 

 
d𝑢

d𝑡
= −𝛾𝑢 + 𝛽𝑣(𝑡), 

 

from (54) we have 

 
d𝑢

d𝑡
= [𝛽𝑔1

′ (1) − 𝛾]𝑢(𝑡), 

 

with particular solution in 𝑢(0) = 0, 
 

𝑢(𝑡) = exp((𝛽𝑔1
′ (1) − 𝛾)𝑡). 

 

Therefore, for short term time we have 

 

𝑥𝑘(𝑡) = 𝑘𝑢(𝑡) = 𝑘exp((𝛽𝑔1
′ (1) − 𝛾)𝑡), 

 

whose epidemic threshold is  

 
𝛽

𝛾
=

1

𝑔1
′ (1)

=
〈𝑘〉

〈𝑘2〉 − 〈𝑘〉
, 

 

which corresponds to the same threshold (47) given in the SIR 

model based on the degree of a node. 

 

When 𝑡 → ∞ it is expected that 𝑥𝑘 tends to the balance of 

(52), that is, 

𝑥𝑘 =
𝑘𝑣

𝑘𝑣 +
𝛾
𝛽

. 

VI. CONCLUSIONS 

The models presented depend on the hypothesis made about 

the population and the states of the disease. If each individual 

has the same opportunity to interact with another, a classical 

epidemiological model could be adjusted, otherwise a network 

model must be adjusted. Similarly, considering that the 

disease can have as susceptible, infected and at most 

recovered state, SI, SIR or SIS models were used. On the other 

hand, as a comparison between classic and network models 

was made, a constant and closed population was considered 

over time, so it was not considered a birth rate or natural or 

disease mortality. 

Since the classical SI model is built by a single parameter 

representing the infection rate, it is determined that the disease 

spreads and manages to infect the entire population as long as 

there is at least one infected, with the difference that the speed 

with which it spreads decreases when its rate approaches zero. 

On the other hand, by fitting an SI model into a network, it 

was determined that the speed of propagation depends both on 

the infection rate and the largest eigenvalue associated with 

the adjacency matrix, as a way of represent a dense or 

dispersed network. Unlike the classical SI model, if the 

infection rate approaches zero, the disease spreads more 

rapidly if the network is denser. 

For a classical SIR model, regardless of the infection and 

recovery rate, the infection tends to be eradicated for a long 

enough period of time. However, if the ratio between the 

recovery and infection rate is higher than the initial susceptible 

fraction, the disease spreads until a certain time and then tends 

to disappear. This dynamic is similar to the SIR model in a 

network, with the difference that the ratio between the 

recovery and transmission rate must be greater than the largest 

own value associated with the adjacency matrix. 

On the other hand, for a classic or networked SIS model, the 

disease does not disappear over time when the ratio between 

recovery rate and contagion is greater than one or the highest 

eigenvalue associated with the adjacency matrix, respectively. 

Since it is not possible to find an explicit solution for SI, 

SIS and SIR models in networks, their states are adjusted by 

the degree of the nodes in the network. Under this 
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methodology and for short term time, the epidemic threshold 

for the SIR and SIS models are equivalent to those previously 

explained by replacing the own value by the excess of the 

average degree, and for the SI model, the speed of disease 

propagation is determined by the excess of the average degree 

above one. 
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