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 Abstract— Flow rate is a necessary variable in industrial 

processes and, therefore, there is a wide variety of instruments 

designed to measure it. However, the most accepted measuring 

devices have the problem of being invasive or intrusive. The 

scientific and technological challenge is to achieve measurement 

by exploiting all the phenomenological possibilities using a non-

intrusive, easy-to-install, portable and low-cost mechanism. This 

paper presents a literature review on the use of vibration analysis 

in flow rate metrological systems in order to identify research 

opportunities for the indirect measurement of this magnitude. The 

methodology for this review was made up by three stages: revision, 

analysis and discussion, performed over a wide set of documents 

published between 2004 and 2020.  The analyzed information 

shows the phenomenological relationship between the features of 

the vibrations in a pipe and the flow rate magnitude circulating 

through it, which can be used for metrological purposes. However, 

several studies report limitations that suggest improvement needs, 

related to acquisition routines, calibration tests and uncertainty 

analysis, as well as time-frequency explorations. A promising line 

of work was found based on soft flow rate sensors that use the 

analysis of pipeline vibrations integrated into computational 

intelligence routines, which allows inference of the flow rate value. 

The findings promote to continue with new technical and scientific 

challenges. 

 

Index Terms— Indirect measurement method, flow rate, soft 

metrology, soft sensor. 

 

   Resumen— El caudal es una variable necesaria en procesos 

industriales, por lo que existe gran variedad de instrumentos para 

su medición. Sin embargo, las alternativas mejor aceptadas de 

registro presentan inconvenientes por lo invasivo o intrusivo que 

requiere ser el medidor para su confiabilidad. El reto científico y 

tecnológico consiste en lograr la medición explotando todas las 

posibilidades fenomenológicas mediante un mecanismo no 
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intrusivo, de fácil instalación, portátil y de bajo costo. Este artículo 

presenta una revisión del estado del arte sobre el uso del análisis 

de vibraciones en sistemas metrológicos de caudal a fin de 

identificar oportunidades de investigación para su medición 

indirecta. La metodología para esta revisión, se compuso de tres 

etapas: revisión, análisis y discusión, sobre un conjunto amplio de 

documentos publicados entre 2004 y 2020. La información 

analizada muestra la relación fenomenológica entre las 

características de la vibración en una tubería y la magnitud del 

caudal circulante en ella, lo cual puede ser usado con propósitos 

metrológicos. Sin embargo, varios estudios reportan limitaciones 

que sugieren necesidades de mejoramiento, relacionadas con 

rutinas de adquisición, pruebas de calibración y análisis de la 

incertidumbre, así como exploraciones de tiempo-frecuencia. Se 

encontró una línea de trabajo promisoria basada en soft sensores 

para caudal que, con el análisis de vibraciones de la tubería 

integrado a rutinas de inteligencia computacional, permite inferir 

el valor del caudal. Los hallazgos impulsan a seguir con nuevas 

apuestas técnico-científicas. 

 

 Palabras claves— Caudal, método de medición indirecta, soft 

metrología, soft sensor. 

I. INTRODUCTION 

LOW rate measurement is a relevant issue in many different 

contexts, such as processes control and potable water 

distribution networks [1]. Nowadays, there is a wide variety of 

measuring instruments for this variable that have excellent 

precision. However, most of these devices have one or several 

of the following drawbacks: they are intrusive sensors that need 

to be installed within the pipe [2][3], they require a complex 

installation procedure that is not suitable for portable measuring 

systems [1], or they are expensive [4]. These disadvantages are 

critical in specific applications, such as the contexts where 
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portable measuring systems are required, when a large number 

of sensors most be installed, or when flow rate in going to be 

measured in adverse conditions, like in the case of corrosive or 

very dense fluids 

Literature reports new trends in the development of flow rate 

measurement systems that are easy to install, non-intrusive and 

not expensive, usually based in the use of soft metrology 

systems or soft sensors, which are indirect measurement 

systems that infer the value of the variable of interest from 

measures of other related variables that are easier to measure 

[5]. One of the most relevant approaches is the development of 

flow rate soft metrology systems using the measurement of 

representational characteristics derived from the vibrations that 

are produced on a pipe when a fluid is passing through it. This 

approach has shown promising results to achieve non-invasive 

and precise flow rate measurement at low cost [6]. Although 

pipe vibrational analysis has been proposed as a mean to 

achieve flow rate measurement since de 1990’s, this type of 

indirect measurement systems is still under development and 

need to achieve better precision, stability and consistency in the 

measurement in order to guarantee the reliability of the method.  

This paper presents a literature review on the use of pipe 

vibrational analysis applied to flow rate measurement with de 

aim of identifying research opportunities in this area.  A general 

structure for this type of system has been identified, along with 

the main techniques and methods used in the development 

process, encompassing the sensor selection, the signal 

processing and the analysis used to infer the flow rate value. 

Finally, results obtained for different authors in the literature 

are discussed.  

II. REVIEW METHODOLOGY 

The research methodology is qualitative and is made up by 

three stages, as depicted in Fig. 1.  

 

The following sources of information were used: 

IEEEXplore and SCOPUS.  The thesaurus and the number of 

documents retrieved in each database are shown in Table I.  

 

 
Several types of documents were retrieved, including journal 

papers, conferences proceedings and transactions. These 

documents were further filtered in order to analyze only those 

that were focused on systems intended to infer a flow rate 

measurement from vibration analysis. The papers that were 

considered to be relevant were analyzed in two senses:  search 

for important papers cited and search for those that were 

frequently cited by the initial selection. 

Because of the subject analyzed in this review is relatively 

new and the number of papers that directly address the 

development of flow rate inference based on vibrational 

features is limited, some papers related to the development of 

soft sensors, machine learning techniques and sensor 

characteristics were used to provide context.      

The final selection of documents has a time window from 

2004 to 2020. These papers were analyzed in the light of the 

following research questions: 

 ¿What features have been proposed for establishing 

the phenomenological relation between flow rate and 

pipe vibrations? 

 ¿What are the external parameters that influence the 

relation between flow rate and vibrational features? 

 ¿What are the strengths and weaknesses of approaches 

for the flow rate inference processes from a 

metrological performance perspective? 

 ¿What is the performance of the methods that have 

used pipe vibrational analysis with metrological 

purposes and how has this performance been 

measured? 

With these research questions, the documentation of the main 

developments for flow rate measurement using pipe vibrational 

analysis were identified. The classification and selection of the 

information led to the identification of a general structure for 

flow rate soft sensors, as well as the determination of the most 

commonly used approaches in each one of the stages that 

compose such structure. Finally, it was possible to discuss the 

parameters of influence in flow rate inference models and the 

strengths, restrictions and limitations. Table II shows the 

documents that were considered to be the most relevant for the 

subject of the review. 

 

TABLE I 

REPRESENTATIVE SENSORS IN THE LITERATURE 

Keywords Scopus IEEEXplore 

“flow rate” + “indirect measurement” 96 2 

“flow rate” + “soft sensor” 79 5 

"flow rate"  +  "vibration analysis" 260 4 

"flow rate" + "soft sensor"    79 15 

“flow rate estimation” + “vibration”    7 2 

“flow rate” + “accelerometer”    120 18 

“flow rate” + “acoustic sensor”    44 4 

“flow rate” + LDV 294 5 

 

 

 
Fig. 1.  Stages in the review methodology. 
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III. CONTENT 

A. Flow rate and vibrations 

The correlation between vibrations and flow rate on a pipe has 

been studied since the 1990’s, but it is still a field in 

development and there are not commercial developments yet.   

In 1992, INEEL (Idaho National Engineering and 

Environmental Laboratory) performed a series of loss-of-fluid 

tests that considered several measurements, including an 

accelerometer attached to the pipe. The measurement analysis 

revealed that the standard deviation of the signal increased with 

flow rate. This initial result motivated an additional study, that 

was fund by the same laboratory and focused in the study of the 

correlation between vibration and flow rate with metrological 

purposes [6].    

Different alternatives have been proposed in the field of flow 

rate indirect measurement techniques. In the literature, the 

experimental correlation between the fluid flow rate through a 

pipe (𝑄̇) and the acceleration affecting the pipe wall in the radial 

direction (
𝜕2𝑟𝑤

𝜕𝑡2 ) has been described with a series of linear 

relations (∝), expressed by (1) [4][1].

 

 

 

TABLE II 
MORE RELEVANT DOCUMENTS FOUND REGARDING FLOW RATE ESTIMATION USING VIBRATIONAL ANALYSIS  

AÑO Title Key words Data base Type of publication DOI  

2004 
Flow Rate Measurements Using Flow-
induced Pipe Vibration [6] 

Flow measurement, instrumentation, pipe 
flow, noise 

Scopus Journal Q1 10.1115/1.1667882 

2008 
NAWMS: Nonintrusive Autonomous 
Water Monitoring System [7] 

Adaptive sensor calibration, machine 
learning, water flow rate estimation, 

nonintrusive and spatially distributed 

sensing, tiered information architecture, 
parameter estimation via optimization 

Scopus 
Conference 
proceedings 

 

10.1145/1460412.1460

443 

2011 

Initial Test and Design  of a Soft  

Sensor  Flow Estimation Using 
Vibration Measurements [14] 

Microphones, frequency domain analysis, 
fluid flow measurement, estimation, 

vibrations, pollution measurement, 

accuracy 

IEEE Conference 
10.1109/ICCIAutom.20

11.6356765 

2013 
Fluid  Flow Rate Estimation Using 
Acceleration Sensor [10] 

Vibrations measurement, flow rate 

measurement in pipes, accelerometer, 

LDV. 

IEEE Conference 
10.1109/ICSensT.2013.
6727646 

2013 

A Nonintrusive and Single-Point 
Infrastructure-Mediated Sensing 

Approach for Water-Use Activity 

Recognition [34] 

Water-use activity recognition, machine 

learning, infrastructure-mediated sensing 
IEEE Conference 

10.1109/HPCC.and.EU

C.2013.304. 

2015 
Fluid Flow Measurements by Means of 

Vibration Monitoring [5] 

Flowmeter, acceleration measurement, 
micro-accelerometer, signal processing, 

laser Doppler vibrometer 

Scopus Journal Q1 
10.1088/0957-

0233/26/11/115306. 

2015 
Correlating Sound and Flow Rate at a 
Tap [13] 

Flow rate, Sound, water use Scopus 
Conference 
proceedings 

doi:10.1016/j.proeng.2
015.08.953. 

2015 
Nonintrusive Method for Measuring 

Water Flow in Pipes [2] 

Flow measurement, pipe vibration, 

piezoelectric accelerometer. 
Scopus 

Conference 

proceedings 
  

2016 

Optimization of Flow Rate 

Measurement Using Piezoelectric 
Accelerometers: Application in Water 

Industry [3] 

Second order calibration uncertainty, pipe 

vibration, flow induced vibration, 
piezoelectric accelerometer, water flow 

rate measurement 

Scopus Journal Q1 
10.1016/j.measurement
.2016.05.101 

2018 
Vibrational Signal Processing  for 

Characterizatión of Fluid in Pipes [1] 

Fluid flow measurements, flowmeter, 

vibration measurements, laser Doppler 
vibrometer, vibration signal processing, 

fast fourier transform, root mean square 

value, random signals 

Scopus Journal Q1 
10.1016/j.measurement

.2017.06.040. 

2018 
Flow Measurement by Wavelet  Packet 

Analysis of Sound Emissions  [12] 

Acoustic emissions, flow measurement, 

fluids, multilayer perceptron, norm 

entropy, wavelet packet analysis 

Scopus Journal Q4 
10.1177/002029401876

8340 

2018 
Estimatión of Flow Rate Through 
Analysis of Pipe Vibration [8] 

Accelerometer, estimation, frequency 

response, flow rate, neural network, 
vibration 

Scopus Journal Q3 
10.2478/ama-2018-
0045 

2018 

Non-invasive Estimation of Domestic 

Hot Water Usage with Temperature and 
Vibration Sensors [9] 

Hot water flow estimation, Smart water 

heaters, Smart grid 
Scopus Journal Q2 

10.1016/j.flowmeasinst

.2018.07.003. 

2020 

Smart Water Grid: A Smart 

Methodology to Detect Leaks in Water 

Distribution Networks [11] 

Smart city, smart water grid, vibration 

measurement, laser Doppler vibrometry, 

water leaks, smart sensing 

Scopus Journal Q1 
10.1016/j.measurement
.2019.107260. 
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𝑄̇ = 𝐴𝑈  ∝  𝑢′ ∝ 𝜏𝑤 ∝  
𝜕2𝑟𝑤

𝜕𝑡2         (1) 

Where, 𝐴 is the cross-sectional area of the pipe, 𝑈 is the 

averaged flow velocity, 𝑢′ is the flow velocity fluctuations 

along axial, 𝜏𝑤 is the shear stress in the pipe. In order to 

establish a direct mathematical relation between vibration and 

flow rate, in [7], a third order root function of the water flow 

rate 𝑓(𝑡), expressed by (2), was successfully tested. 

 

𝑓(𝑡) = 𝛼 √𝑣(𝑡)3 + 𝛽√𝑣(𝑡) + 𝛾𝑣(𝑡) + 𝛿    (2) 

 

Where, 𝑣(𝑡) is the measured vibration, and 𝛼, 𝛽, 𝛾 and 𝛿 are 

function parameters that must be adjusted according to the 

study case. These relationships given by (1) and (2) have 

allowed the development of soft sensors that use measurements 

of pipe vibrational features to infer the value of the flow rate.  

Although several studies in the literature use a variety of 

methodological structures for relating flow rate with vibrations, 

it is possible to deduce a general structure based on signal 

processing, the construction of representation spaces and 

inference by machine learning techniques, as shown in Fig. 2. 

 

B. Signal acquisition 

There are manly three types of sensors (see Table III) that have 

been used to acquire signals that capture the vibrational features 

on a pipe: accelerometers, which are attached to the pipe wall 

and register the acceleration that affects in in several axes [2] 

[3] [6] [8]  [9] [7]; Laser Doppler Vibrometer (LDV), that use 

a laser  and  an interferometer to measure the vibration 

amplitude and frequency based on the Doppler shift of the laser 

reflected on the pipe surface [1] [4] [10] [11]; and acoustic 

sensors, which have been used on works that focus on 

vibrations associated with acoustic dynamics, where promising 

results have been accomplished [12] [13] [14] [15].  

Accelerometers are popular sensors in vibrational signal 

acquisition, and have been used in a variety of applications such 

the integrity analysis of structures and machinery [16] [17], 

water leak localization [18][19], helicopter transmission 

diagnostics [20] [21] and detecting incipient damage on rotating 

machines [22], among others. The fact that accelerometers 

usually measure the vibrational characteristics in three axes 

provides a more complete representation of the system 

dynamics, which allows constructing a better inference space,  

increasing the soft sensor  accuracy [23].  

Piezoelectric and MEMS accelerometers have been used in 

flow rate soft sensors. Piezoelectric accelerometers have low 

noise levels and wide frequency responses but they are more 

expensive and they suffer from significant attenuation and 

phase shifts at low frequencies. Also studies in some 

piezoelectric accelerometer have shown a noise spectral density 

that increases with decreasing frequency. In contrast, MEMS 

accelerometers are less expensive and they exhibit a good 

response at low frequencies, but they have a smaller bandwidth 

and present higher noise levels [24][25]. 

LDVs have been used since 1964 in several different 

applications, such as structural health monitoring [26], the 

analysis of  propagation and scattering properties of ultrasonic 

waves in solids [27] and condition monitoring of wind turbines 

[28]. One of the advantages of this type of sensor is that the 

instrument does not require direct contact with the analyzed 

pipe surface. However, that characteristic may be an 

inconvenient in the cases where there is limited access or not 

line of sight [29].  

Acoustic sensors have been used in machine and structural 

monitoring [30], leak detection systems [31],  the detection of 

solid particles in water-conveying pipe flow [32] and  

biomedical applications [33], among others. Similar to LDV, 

acoustic sensors do not need to be indirect contact with the 

TABLE III 
REPRESENTATIVE SENSORS IN THE LITERATURE 

Sensor Authors 

Accelerometer 

Evans et al. 2004 [6], Kim et al. 2008 [7], Hu et al. 

2013 [34], Medeiros et al. 2016 [3], Venkata & 

Navada 2018 [8], Pirow et al.2018 [9]. 

LVD 
Dinardo et al. 2013[10], Campagna et al. 2015. [4], 

Dinardo et al. 2018 [1], Fabbiano et al. 2020 [11].  

Acoustic sensor 
Safary & Travassoli 2011 [14], Kakuta et al. 2012 

[15], Jacobs et al. 2015[13], Goksu 2018 [12] 

 

 

•Accelerometer 
•LVD 
•Acoustic sensor 

•Filtering 
•Frequency analysis 
•Time analysis 
•Time-frequency 
analysis 
•Relevance analysis 
 

•Linear model 
•Quadratic model 
•Regression by parts 
•Artificial neural 
networks 

Vibration
s 

Signal 

acquisition 
Signal  

preprocessing 
Representation 

space 

Machine 

learning 

routines 
Flow rate 

estimation 

Flow rate soft sensor 

Fig. 2.  Flow rate soft sensor structure. 
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measured surface, but in this case line of sight is not necessary.  

C. Signal preprocessing 

Before processing the sensor signal to obtain a set of 

representation features suitable for the inference process, some 

of the papers in the literature include a previous pre-processing 

stage. Such stage regards basically with a filtering procedure, 

to remove interferences and disturbances that the signal may 

contain, such as noise from the electrical network, measurement 

devices or the booster pump, in order to reduce the effect of 

noise on the representation space. In the pre-processing stage 

implementation, different types of filters have been used, such 

as Butterworth and “notch comb” digital filters [2] [3], Sallen-

Key architectures [8], median filters [34] and Wavelet 

transform based filters [1], which have demonstrated good 

performance for this type of signals. 

D. Representation space 

After the preprocessing stage, an assemble of signal 

deconstruction algorithms must be structured trough indexes 

and transforms that can capture the vibrational dynamics to 

build a feature space from the sensor signals and allow an 

estimation space for the inference algorithm. In this aspects, 

literature shows three approaches:  

1) Approaches based on frequency analysis 

This approach is based in the idea that the fundamental natural 

frequency of a pipe containing a flowing fluid decreases as the 

flow rate increases [6], and thus, some authors have used the 

spectrum of the signal as an input to the inference algorithm [8].  

Usually, the spectrum of the signal is calculated and analyzed 

to look for parameters that are related to the flow rate. The main 

parameter used is the amplitude of the first harmonic of the 

signal spectrum [1][10][11][13][14], but the central frequency 

of the first harmonic has been used too [6]. In all the cases in 

the literature, only one feature has been used to represent the 

system dynamic and, thus, no relevance analysis has been 

performed optimize the representation space.  

Some of the authors report that the changes in natural 

frequency are usually very small, and for this reason a technique 

based frequency analysis would not work well for small flow 

rates [6]. This has led to the use of other types of analysis. The 

frequency analysis approach has been used in systems that use 

either an LDV or acoustic sensors. 

2) Approaches based on time analysis 

The vibration sound in water-conveying pipe flow can be 

analyzed as a loudness intensity and characterized in terms of 

the signal amplitude in the time domain [13]. Also, a statistical 

parameter can be computed over the time signal and used in the 

inference process. Some authors have used the standard 

deviation of the vibrational signal [2] [3] or of the frequency 

domain average time series signal [6] [9], and some other 

propose the use of the RMS value of the signal  [1] [11] [13]. 

For the RMS value to be a suitable indicator of the vibrational 

signal energy, the signal must be time invariant and wide-sense 

stationary [1]. In the same way as for frequency analysis, the 

works that have used this approach have developed 

representations with only one feature. The time analysis 

approach has been used in systems that use accelerometers or 

microphones as sensors. 

3) Approaches based on time-frequency analysis 

This approach is based in the use of decomposition techniques 

that analyze both the time and frequency characteristics of the 

signals, such as wavelets.  

In 2018, Göksu propose the use of Wavelet Packet Analysis 

(WPA), which has the advantage of enabling the analysis of 

stationary and non-stationary signals [12]. This is an approach 

that relies on multiple features to represent the system dynamics 

and includes a relevance analysis, using norm entropy, to obtain 

an effective representation space. Using this kind of features, a 

mean absolute error was of 3.99E−04 L/s. 

The time-frequency analysis has been used in systems that 

use microphones as sensors. Experimental results indicate that 

wavelet transform is a good candidate for flow measurement by 

acoustic analysis and there are open issues to improvement by 

varying window width and wavelet basis function. 

E. Machine learning routines 

Once the signal processing has been performed and the 

representation space has been constructed, the obtained features 

are used as the input for an inference algorithm that is going to 

compute the flow rate value. The inference model is usually a 

 

TABLE IV 
MACHINE LEARNING TECHNIQUES USED IN FLOW RATE INFERENCE 

Technique Advantages Disadvantages 

Linear 
regression 

•Well-known 

•Low complexity 

•Good interpretability 
•Good performance when 

outputs are linearly 

independent from inputs 
•Many real world 

problems can be 

simplified 

•Can identify only linear 

relations  

•Low performance with 
highly collinear data 

•Sensitive to outliers 

•Assumes normally 
distributed data 

Polynomial 

regression 

•Low computational 

complexity 

•Very flexible for 
empirical developments 

•Broad range of functions 

can be fit 
•Polynomial fit a wide 

range of curvature 

•Strong sensitive to 

outliers 

•Low performance with 
highly collinear data 

•Prone to overfitting 

•Fewer model validation 
tools 

Regression 

by parts 

•Very flexible 
•Combines all the 

strengths of linear and 

polynomial regression 

•Prior knowledge of the 
nature of the data for a 

good selection of parts  

•Sensitive to outliers  
•Unsuitable for highly 

collinear data 

•Prone to  overfitting 

ANN 

• Bypasses the feature 
selection /extraction stage 

•Good performance for 

highly nonlinear 
processes 

•High generalization 

capability 
•Nonlinear mapping in 

large datasets  

•Possibilities for 

probabilistic assignment 

•No prior knowledge of 
the nature of the data 

•Training is 
computationally 

demanding 

•Latent probability of 
overfitting 

•A lot of parameters to be 

adjusted 
•Low performance if the 

number of descriptors 

exceeds the number of 

observations 
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machine learning algorithm that can learn the relationship 

between the features and the flow rate using a labeled data set. 

Many of the works have proposed a simple linear mode 

obtained with least squares fit  [1][4][9][10], but some others 

have proposed nonlinear models, such as polynomial regression 

[2] [3][6][14] and a third order square root curve [7]. Also, 

regression by parts has been used, combining linear and 

quadratic fits or third degree polynomial regression and 

quadratic regression [2] [3]. 

Some other authors have used Artificial Neural Networks 

(ANN), which can learn more complex nonlinear models [8] 

[12]. ANN is one of the most popular alternatives in soft 

metrology systems [5] and soft sensor development and has 

been used in a variety of applications [35] [36] [37] [38]. 
However, there is a lot of machine learning algorithms that are 

commonly used in soft metrology that have not been explored 

in the case of flow rate estimation, both for linear and not linear 

regression. Popular linear machine learning approaches in soft 

metrology are Multiple Linear Regression (MLR) [39] [40] [37] 

[41], Principal Component Regression (PCR) [37] [42], Partial 

Least Squares (PLS) [43] [44] [45] [38] [46], Ridge Regression 

(RR) [77], Least Absolute Shrinkage Selection Operator 

(LASSO) [40] [47] and Gaussian Process Regression (GPR) 

[40] [38]. In nonlinear regression, some of the alternatives are 

Support Vector Regression (SVR) [48],  K Nearest Neighbor 

(KNN) regression [49] and Extreme Learning Machine (ELM) 

[50] [51]. 

As for the relationship between the sensor selection and the 

type of inference model, the works that use LDVs have always 

proposed linear models while the ones using accelerometers or 

microphones have proposed different approaches in the 

inference model. Table IV is a compendium of advantages and 

disadvantages of the methods that have been used in the 

literature for flow rate estimation. 

Finally, there are some approaches that do not focus on 

precisely measure flow rate, but only try to identify patterns in 

the flow rate associated to activities such as bathing or cooking. 

In this case, the inference model is replaced with a classification 

algorithm, like Support Vector Machines [34].  

F. Flow rate estimation 

Results reported in the literature, that have been obtained with 

the implementations described in the previous section, are 

diverse and the comparison between them implicates high 

levels of difficulty because the conditions in which each system 

has been tested are different in terms of magnitudes, installation 

parameters, equipment characteristics, data acquisition and 

sampling, among other issues. Concerning these diverse 

conditions, some authors have proved the influence that certain 

operation parameters have in each soft sensor model,  such as 

pipe material and diameter [4], sensor placement [14], temporal 

duration of the analyzed signals [2][3] and the operation 

characteristics of the mechanism that boost the fluid through the 

pipe [10].  

Campagna et al tested the influence of the pipe diameter and 

found that increasing it causes a decrease in the sensitivity in 

the relation between the amplitude of the first harmonic of the 

signal and the flow rate [4]. They also found that another 

parameter that has an effect in the relationship between 

vibrations and flow rate is the pipe material, performing tests in 

PVC and galvanized steel pipes. They found that the vibrational 

peaks were greater for PVC than for steel pipes with the same 

diameter and that the sensitivity was greater for PVC pipes than 

for steel and this effect was more evident for bigger diameters 

[4]. This last fact was also observed by Evans et al, who stated 

that the slope of the curve in the relation between the standard 

deviation of the acceleration signal an the flow rate decreased 

when the density and stiffness of the material were increased 

[6]. 

Dinardo et al studied a hydraulic system that had a turbo-

pump with variable revolution and they performed tests varying 

the rpm of the pump. They found models with different 

parameter for each rpm value, which indicates that this variable 

also has an effect on the relationship between vibration and flow 

rate [10]. Medeiros et al investigated the effect of varying the 

duration of the analyzed signals, and stated that 10 seconds is 

the optimum time to estimate flow rate [2][3]. Venkata & 

Navada performed test with two different fluids: water and 

sugar solution. Their proposed model was valid for both fluid, 

with no need for adjusting parameters [8]. 

Likewise, Safari & Travasoli studied the effect of changing 

the placement of the sensor and concluded that the position of 

the sensor changed the type of correlation between flowrate and 

vibration. They found a quadratic model when the sensor was 

 

TABLE V 

LITERATURE RESULTS 

Authors Results 

Evans et al., 2004 [6] 

PVC pipe: 𝑅2 =  0.997  

Stainless steel pipe: 𝑅2 =  0.991 

Aluminum pipe : 𝑅2 =  0.983 

Kim et al., 2008 [7] 

Tested in several pipes. One of the cases 

had a mean error of 0.0049 𝐿/𝑠 with 

standard deviation of 0.0014 in a 180 𝑠 
duration experiment. In general, the 

results gave an estimation error below 

Safari & Tavassoli, 2011 
[14] 

The absolute accuracy is presented as a 
function of real flowrate, which is  

approx. between 50 and 300 𝐿/ℎ 

Jacobs et al., 2015 [13] 
Mean error of 15%, with 3 of 5 readings 

with less than 6% error 

Medeiros et al., 2016 [3] 

With 10 𝑚𝑉/𝑔 accelerometer: 

𝑅𝑀𝑆𝐸 = 1.65 𝑚3/ℎ 

With 100 𝑚𝑉/𝑔 accelerometer: 

𝑅𝑀𝑆𝐸 = 1.87 𝑚3/ℎ 

Dinardo et al., 2018 [1] 
 𝑅𝑀𝑆𝐸 = 0.001 𝐿/𝑠 

 𝑅2 =  0.997 

Göksu, 2018 [12] 

98.62% of mean measurement 

accuracy with 3.99E-4 𝐿/𝑠 mean 
absolute error that corresponds to  

1.38% relative error 

Venkata & Navada, 2018 [8] 

A different error percentage in 

presented for each flow rate value, with 

a mean value of 1.24% and a maximum 

error of 21 𝐿/ℎ  

Pirow et al., 2018 [9] 

A figure presents an analysis of error 

(%) vs. flow rate. Values vary in a wide 

range, but errors below 10% are 
reported for the study cases. 
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placed in the long horizontal pipe and a linear model when it 

was placed in the pipe knee [14]. 

Another difficulty in the literature results comparison is that 

different authors have used different parameters to express the 

proposed model accuracy. Some authors report results in terms 

of the statistical parameter 𝑅2 [6], Root Mean Squared Error 

(RMSE) or mean absolute error [7][12][13], while others do not 

report measurement accuracy parameters, but concentrate only 

on proving that there is a deterministic relation between 

vibration characteristics and flow rate, and test the effect of 

some parameters, such as the pipe characteristics [10][4]. Table 

V shows some results in the literature that report specific 

performance results. 

The studies in the literature do not discriminate the results 

during the training phase of the model and the posterior 

validation, and for this reason it is not possible to estimate the 

generalization ability of the proposed models. Additionally, 

some of the studies have several measurement points with low 

statistical sufficiency (3 to 5 instances of analysis). 

One of the papers reviewed in the literature presents a 

proposal regarding the uncertainty estimation for the soft 

sensor, where they state that the components that must be 

considered are the uncertainty associated with the regression 

algorithm and the one associated with the sensors, including the 

sensor that registers the vibrational characteristics and the flow 

rate sensor used to obtain the reference values necessary to train 

the inference algorithm [2] [3]. 

IV. CONCLUSIONS 

This paper is a literature review of the metrological advantages 

of applying vibration analysis to the inference of pipeline flow 

rate, showing that there is a phenomenological relationship 

between the characteristics of the vibrations in a pipe and the 

magnitude of the flow circulating through it. This fact suggests 

that there are important opportunities for the development of 

new alternatives of soft sensors that support the estimation in 

flow rate measurement. Consequently, the metrological use of 

vibrational analysis in pipes opens a door to new research 

associated to the parameterization, adjustment and installation 

of the sensor, in relation to signal processing techniques 

regarding useful vibration dynamics correlated to flow rate 

change, in addition to linear or nonlinear approaches to 

inference. 

Although most semi-analytical methods are accurate and can 

be used in static or dynamic nonlinear systems, or where the 

flow signal is not completely static, the data provided for the 

analysis is affected by fluctuations, outliers and even erroneous 

data. Therefore, the development of this type of systems 

requires that data acquisition be improved, as published papers 

suggest that the structures and acquisition schemes present 

notable difficulties in terms of mechanisms that reduce 

disturbances and noise. Additionally, the literature reviewed 

showed that the system parameters that influence the 

measurement estimation require compensation, self-test or 

calibration procedures to improve the measurement precision 

and reliability. The difficulty lies in the fact that the variables 

of external influence affect the estimation in different 

proportions, and it is not always possible to distinguish all the 

variables with their influence weights. 

As for the construction of the feature space that represents 

the vibratory dynamics, the different approaches reviewed 

report restrictions associated with low sensitivity for low flow 

rate levels and the need for the analyzed signals to be time 

invariant and stationary, at least in a broad sense. In this sense, 

it is evident that time-frequency methods have not been widely 

explored in this context. 

The use of soft sensors for the analysis of measurements that 

are difficult to observe directly, is becoming an important trend 

in nanotechnology, robotics, analysis of big data and 

computational intelligence in the context of the fourth industrial 

revolution. Therefore, it is necessary to define precise, stable 

and consistent procedures for estimating the measurement, 

including new ways of estimating uncertainty measures under 

procedures that use abstract and multivariate representations. 

The uncertainty analysis in soft sensor is still an open field in 

the literature where only few studies have been made [5]. 
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