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 Abstract— Bearings installed in industrial electric motors, 

currently are constituted as the main mode of a failure affecting 

the global energy consumption. Since energy demand from light 

industry only grows, demand for effective maintenance in electric 

motors is critical. Proper life management of such assets focuses 

on the study of the useful life, delivering efficient information 

about location and severity of different health status, and using 

vibration signals from bearings with analysis approaches based on 

characteristics in time, frequency and time-frequency domains. 

These domains are characterized by its own benefits as well as its 

shortcomings, and thus most current works focus only on one of 

these analyses’ domain. This paper studies a possible sub-relevant 

set of features that favor separability between classes of severity 

levels to perform training on a concatenation of hierarchical 

HMM in order to analyze multiple health conditions in bearings, 

including faults and severities in the following rolling elements: 

ball, inner race, and outer race. As a result, a substantial 

improvement is observed in the diagnosis of fault type and severity 

level present in the bearings and being in concordance with 

previous studies where just overall process is reported. 

 

Index Terms—  Degradation levels, Hierarchical Hidden 

Markov Models, mode failures, multi-domain analysis, useful life, 

vibration signals. 

 
 Resumen— Los rodamientos instalados en los motores eléctricos 

industriales, son actualmente la fuente principal de modos de fallos 

que afectan el consumo energético mundial. Debido a que la 

demanda energética de la denominada industria ligera solo crece, 

es crítica la exigencia por mantenimiento efectivo en motores. Una 

administración adecuada del ciclo de vida de estos activos debe 

enfrentar el estudio de la vida útil, entregando información 

eficiente sobre locación y severidad de los diferentes estados de 

salud, y usando señales de vibración desde los rodamientos con 

análisis enfocados en características de los dominios del tiempo, la 

frecuencia y del tiempo-frecuencia. Estos dominios se caracterizan 

por sus propios beneficios, así como por sus deficiencias, siendo así 
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que la mayoría de los estudios actuales se enfocan solo en uno de 

estos dominios de análisis. Este documento estudia un posible 

conjunto sub-relevante de características que favorezca la 

separabilidad entre clases y severidades para luego realizar 

entrenamiento sobre una concatenación de HMM Jerarquizados y 

con el propósito de analizar múltiples condiciones de salud en 

rodamientos, incluyendo fallas y severidades en los siguientes 

elementos rodantes: bola, cara interna y cara externa. Como 

resultado, se observa una sustancial mejora en el diagnóstico de 

tipos de fallo y niveles de severidad presentes en rodamientos, y en 

concordancia con resultados de estudios previos donde no se 

reportan datos específicos para niveles de severidad. 

 

Palabras claves— Análisis multi-dominio, modelos Ocultos de 

Markov Jerárquicos, modos de fallos, niveles de degradación, 

señales de vibración, útil remanente. 

I. INTRODUCTION 

OLLER bearings are widely used in industry fields, where 

reliability has always been paramount [1]. The production 

of goods that will be sold to the final consumer, like 

manufacturing of clothes, shoes, furniture, electronics, 

construction of buildings, automobiles, innovative new energy 

industries, and in general all produced that is not sold to another 

manufacturer (also light industry), will experience an incredible 

44% growth in energy demand, from a 440 Mtoe in 2018 to an 

estimated 635 Mtoe for 2040 [2]. 

Due to operation in difficult conditions, bearing failures often 

occur, which can have catastrophic consequences. These 

failures result in dynamic behavior that generates non-

stationary vibration signals [1, 3]. And so it is that bearing 

failures will lead to wind turbine cannot operate properly. The 

proper management of its maintenance have helped to save up 

to $1677 millions per year just in wind energy industry [4, 5]. 

Therefore, considering the irreplaceable role of the bearing in 
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the operation process, it is very important to monitor and predict 

its health status [6, 7]. 

Currently, research focuses on the Useful Life, since it allows 

for managing the residual risk in equipment before it fails [8]. 

In such scenario, diagnosis is a classification problem while 

prognosis must deliver results on location and severity (the 

result of a failure mode in the system function perceived by the 

user), following a process of detection of occurrence and 

perform statistical analysis of the observed characteristics in 

order to reach a decision in the state of structural health. 

Vibration signals from the bearings are quasi-stationary in 

nature, with varying parameters over time holding 

nonstationary noisy and nonlinear characteristics. Due to the 

system nature, these parameters will vary even when signals 

come from supposedly identical equipment [9]. Current 

strategies based on signal analysis look for features in time, 

frequency, and time-frequency domains [10]. In the time 

domain, features are mainly based on the statistical behavior of 

the waveform, but do not adequately reflect the change in 

frequency components as the progression of a fault develops 

[11]. In the frequency domain, traditional techniques include 

the Fast Fourier Transform (FFT) and power spectrum, but 

given the nature of the signals, these analyses can be insensitive 

to changes in time of the intensity of frequency components 

[10]. Other strategies use techniques in the time-frequency 

domain, such as Wavelets, which are notorious for being 

sensitive to the selection of tuning parameters [12]. 

Furthermore, the analysis of extracted features usually falls on 

a single domain, namely time, frequency or time-frequency 

[10]. However, these studies are not considering the 

contribution of each of these domains to the discrimination of 

the degradation process. Described approaches also lack the 

combination of domains [13]. 

The Hidden Markov Models (HMM) are suitable for the 

analysis of random dynamical systems, in order to make 

predictions about the diagnosis of the degradation process [14]. 

However, when the number of failure modes grows, HMMs 

require a large number of training states. One variant of the 

HMM is the Hierarchical Hidden Markov Models (HHMM), 

which behave as a chain of sub-hierarchical HMM analyzing 

multiple health states. It is important to note that the accuracy 

of a diagnostic system involving various types of faults and 

levels of severity should be evaluated considering the accuracy 

and variability in each class [13]. 

In this work, we introduce a signal-based approach to support 

bearing diagnosis by fault type and severity evaluation. 

Furthermore, we present an analysis of extracted features from 

vibration signals in bearings using time, frequency, and time-

frequency domains in order to determine the smallest set of 

feature combinations for each level in an HHMM framework. 

The rest of the paper is organized as follows: a brief review 

about multi-domain feature extraction, HMM, and HHMM, it 

is presented in the theoretical background section; the data base 

and the experimental framework definition is shown in the 

experimental setup section; experimental validation and 

observation are illustrated in the results and the discussion 

section; finally, the conclusions and the acknowledgments are 

given. 

II. THEORETICAL BACKGROUND 

A. Multi-domain feature extraction 

For discriminating bearing faults from vibration signals, 

three different feature domains are considered: First, the time 

domain (T) is the natural representation [15]. Here, 17 temporal 

features are extracted from given signal 𝔃 ∈ ℝ𝑻, namely: the 

mean, the standard deviation, the skewness, the kurtosis, the 

maximum, the root mean square, the shape factor, the unsigned 

mean factor, the clearance factor, the impulse factor, the upper 

and lower bound histogram values, the likelihood value, the 

Shannon’s entropy value, the root mean square over signal 

peaks, and the standard deviation of signal values greater than 

the 70th percentile. Second, the following 16 frequency-based 

(F) features are extracted from the FFT representation of 𝔃 [15]: 

the mean, the variance, the skewness, the kurtosis, the center 

frequency, the standard deviation, the root mean square, the 

mean square, the inverse root mean square, the standard 

deviation of frequency values greater than the center frequency, 

the mean over the skewness, the mean over the kurtosis, the root 

mean square over the mean, the root of the geometric mean, the 

mean absolute deviation, and the interquartile range. Finally, 

some time-frequency-based features are also extracted from the 

well-known Mel-Frequency Cepstral Coefficients (MFCC) 

aiming to highlight both linear and nonlinear signal properties 

[16]. MFCC have two filter types, linearly distributed for 

frequencies below 1 kHz, and logarithmically distributed for 

frequencies above 1 kHz. The MFCC implementation involves 

the following steps: Segmentation for dividing the signal into 

small frames; Windowing through a Hamming window to 

adjust the frames and to integrate all the closest frequency lines; 

Pre-Emphasis, or filtering to emphasize the higher frequencies; 

Fast Fourier Transform;  Mel filters, or the bank of filters with 

a band pass triangular frequency response; Discrete Cosine 

Transform to convert the Mel spectrum into time domain; and 

Delta Energy Spectrum with 13 velocity deltas and 39 double 

deltas or accelerations, due to the quasi-stationary nature of the 

signals affecting frames as they overlap in their transition [17]. 

Thereby, we carry out the MFCC representation with a 24 filter 

bank and 12 coefficients. Thus, an input multi-domain feature 

matrix 𝑿 ∈ ℝ𝑵×𝑳 is built after vector concatenation of T, F, and 

MFCC measurements, where 𝑵 and 𝑳 are the number of 

samples and features, respectively. 

 

B. Hierarchical Hidden Markov Model 

A Markov Model is any system that at certain instant t, 

belongs to a state from a finite set 𝚿 = {𝑺𝒓: 𝒓 ∈ 𝟏, … , 𝑹}. Thus, 

at discrete uniformly distributed instants, the system performs 

state transitions according to a set of transition probabilities, for 

a time 𝒕 at the current state 𝒒𝒕. Based on the Markovian 

property, the transition probability only depends on the 

previous state 𝑷{𝒒𝒕 = 𝑺𝒋|𝒒𝒕−𝟏 = 𝑺𝒋, 𝒒𝒕−𝟐 = 𝑺𝒋, … } = 𝑷{𝒒𝒕 =

𝑺𝒋|𝒒𝒕−𝟏 = 𝑺𝒋}, besides, the output symbols of the different 

observable states 𝚲 = {𝑽𝒎: 𝒎 ∈ 𝟏, … , 𝑴} are emitted with 
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probability distribution at the state 𝒋 given by 𝒃𝒋(𝒎) =

𝑷{𝒗𝒎 𝒂𝒕 𝒕|𝒒𝒕 = 𝑺𝒋}. Since the output is a probabilistic function 

of the states, the model comprises a double embedded 

stochastic process, which is indirectly observable through the 

set of output sequences (Hidden Markov Model (HMM)) [18]. 

With the aim of discovering complex data relationships in 

bearing fault diagnosis tasks, we introduced a Hierarchical 

Hidden Markov Model (HHMM) applied to the multi-domain 

feature representation matrix 𝕏. In particular, we propose a 

hierarchical Markov chain where the higher HMM layer has 

HMM states as part of their hidden states. In this sense, our 

HHMM requires fixing the topological structure 𝜻, the model 

parameters, and the observations alphabet ∑. 

The topological structure 𝜻 determines the hierarchical levels 

𝑫 ∈ ℕ and the number of states 𝓠 ∈ ℕ by level  

𝜻 = {∀𝒅𝒊 ∶ ∃𝓠𝒊
𝒅 |𝒅𝒊 ∈ 𝟏 … 𝑫}. Note that if the number of states 

per level is the same, then, the subscript 𝒊 is omitted in 𝓠𝒊
𝒅. Now, 

the model parameters 𝜼 = {𝑨, 𝑩, 𝜫} are estimated by the 

horizontal transition matrix  

𝑨 =  {∀𝑨𝒒𝒊
𝒅

= (𝒂𝒊𝒋

𝒒𝒊
𝒅

) | 𝒂𝒊𝒋

𝒒𝒊
𝒅

= 𝑷(𝒒𝒋
𝒅+𝟏 | 𝒒𝒊

𝒅+𝟏)}, the 

observations probability 𝑩 =  {∀𝑩𝒒𝒊
𝑫

= (𝒃𝒒𝒊
𝑫

(𝒌)) | 𝒃𝒒𝒊
𝑫

(𝒌) =

𝑷(𝝈𝒌 | 𝒒𝑫), 𝝈𝒌 ∈ ∑}  and the vertical transition vector 

𝜫 =  {∀𝜫𝒒𝒊
𝒅

= 𝝅𝒒𝒊
𝒅

(𝒒𝒊
𝒅+𝟏) | 𝝅𝒒𝒊

𝒅
(𝒒𝒊

𝒅+𝟏) = 𝑷(𝒒𝒊
𝒅+𝟏 | 𝒒𝒅)}. 

The horizontal transition matrix informs the transition 

probabilities between nodes belonging to the same level 

meanwhile the vertical transition vector encodes the transition 

probabilities from higher-level nodes to lower-level nodes [19]. 

III. EXPERIMENTAL SETUP 

For all provided experiments, the bearing fault diagnosis 

database developed by the Bearing Data Center at Case Western 

Reserve University is employed [20]. Vibration signals were 

acquired at 12kHz and failures were induced by electro-

discharge of 0.0178, 0.0356, and 0.0533 cm in diameter with 

0.028 cm depth size. The faults are labeled as L1, L2, and L3 

(low, middle, and high levels, respectively) at three different 

Rolling elements (failure modes), namely: the Ball, the Inner 

race, and the Outer race, plus the Normal state. The data base is 

organized in 10 folders, one for each rolling element and each 

fault label, plus the normal operation. For a folder, there are 12 

registers of 3.3 s, to each one a Hamming window is applied to 

obtain signal segments of 200 ms with 𝟐/𝟑 overlap. The 

preceding parameter values are based on data reported by [21]. 

So, the multi-domain feature matrix has a total of 𝑵 = 𝟒𝟖 

signal segments and 𝑳 = 𝟒𝟓 characteristics (17 for T, 16 for F, 

and 12 for M, respectively). 

For each provided segment, the three different representation 

domain features described previously (Time (T), Frequency (F), 

and MFCC (M)) are computed. Further, a codebook building 

stage is performed to build the HHMM states to compute a 

compact discrete representation from the multi-domain 

features. Here, the distortion rate is applied to select the number 

of centroids of the k-means algorithm [22], where a distortion 

curve of the clustering method is generated for different values 

of 𝒌. The distortion of a data grouping is defined as: Be a set of 

data (𝑿) modeled by random variables of dimension 𝒑, 

consisting of a mixture of distributions with common 

covariance components (𝑺), and for 𝒌 clusters, with centers 

𝒄𝒙 as near as possible to a given sample in 𝑿, the minimum 

average distortion per dimension when fixed the number of 

centers is given by 𝒅𝒌 =
𝟏

𝒑
𝐦𝐢𝐧
𝒄𝟏…𝒄𝒌

𝑬[(𝑿 − 𝒄𝒙)𝑻𝑺−𝟏(𝑿 − 𝒄𝒙)]. 

The jumps in the resulting values mean reasonable selections of 

𝒌, with the largest jump representing the best selection. In 

particular, the change in distortion between the previous and 

current cluster was analyzed for values from 2 to 30. It was 

found that out of a total of 10 replicates, 80% of the time the 

groups ranged from 22 to 25 groups, so 𝒌 = 𝟐𝟒 was selected. 

Finally, the HHMM models are trained for a two-layer 

structure (𝑫 =  𝟐) by varying the number of states between 2 

and 3 states (𝓠 =  𝟐, 𝟑). The first layer is carried out to identify 

the type of fault, and the second layer is related to the severity 

level, as seen in Fig. 1. A cross validation scheme with 30 

repetitions is used by randomly selecting 60% of the samples as 

the training set. 

 

 
Fig. 1.  HHMM representation, were first layer identify the type of fault, and 

the second layer the severity level. Source: Authors. 

IV. RESULTS AND DISCUSSION 

A. Feature domain analysis 

Our bearing fault diagnosis system is tested as a tool to 

classify the type of fault. In this case, the first layer of the 

HHMM-based classification is used. Moreover, the three 

different features domains are validated aiming to assess their 

effectiveness. Table I presents the cross-validation results, 

showing the mean and standard deviation values for the 

classification performance of the failure types in the set of 

representation domains indicated by the first column. The 

number of states value 𝓠 in HHMM is also presented. From 

Table I, an acceptable type of fault diagnosis performance is 

achieved for all considered domains. Especially notable is the 

accuracy for M-domain. Nonetheless, finding a subset of 

relevant features decreases the data redundancy to favor further 

classification stages, in fact, the best classification results are 

obtained for the M-based features. Moreover, diagnosis of the 

normal state is possible for all domains at this layer, with lower 

accuracy for the frequency domain. 
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Now, Table II shows the severity level classification results 

for each type of fault. Namely, the second layer of HHMM is 

trained according to the different feature-domain combinations. 

Again, the number of states 𝓠 is presented. Note that the normal 

operation class does not require a severity level diagnosis. 

Achieved results show that the severity level classification 

accuracies are lower than the type of fault ones, which can be 

explained by the complex data relationships regarding the 

induced level failures. In particular, discriminating the severity 

level for the ball fault is a challenging task. However, the M-

based features allow revealing a suitable representation space 

that ensures suitable discrimination performances. This layer 

shows the convenience of a hierarchical based model. 

 

B. Intra-domain feature relevance analysis 

In this experiment, we test the intra-domain feature capability 

for discriminating bearing faults and severities using the 

introduced HHMM. Fig. 2 shows the attained results by 

analyzing each fault class, where the number of characteristics 

varies with the domain analyzed, thus: in T (Fig. 2-i) we analyze 

the 17 characteristics in each class (ball, inner, normal, and 

outer) for a total of 68; In F (Fig. 2-ii), 16 characteristics are 

analyzed in each class, for a total of 64; and in M (Fig. 2-iii) we 

have 12 characteristics in each class, for a total of 48. In Fig. 2 

the points according to failure types, or classes, are indicated as 

follows: Ball (+), Inner (o), Normal (*), Outer (x), and the y-

axis is the performance rating value. As seen, frequency domain 

features show uniform accuracy, meanwhile melcepstrum 

features evidence variable accuracy. Furthermore, individual 

features from frequency and melcepstrum domains show the 

better results at severity level diagnosis. 

Afterward, we carry out a forward and backward analysis to 

highlight feature subsets for each domain. According to Fig. 3 

and 4 it is possible to notice how the set of features for each 

domain present different discrimination capacity between the 

two layers. In Fig. 3- (i), (ii) and (iii) the x-axis represents the 

number of characteristics in the forward analyzed subset by 

class, and in Fig. 4- (i), (ii) and (iii) the x-axis represents the 

number of characteristics eliminated in the backward analyzed 

subset by class. In both figures the y-axis is the performance 

rating value, and the points according to failure types, or 

classes, are indicated as follows: Ball (+), Inner (o), Normal (*), 

Outer (x). 

Thus, the first layer of the HHMM proposed only considers 

the features 1, 2, 4, 6, 8, and 9 of the M-domain. With respect 

to the second layer, the features 2, 3, 9, 12, 13 and 16 of the F-

domain are employed to classify the severity level. For the 

sake of simplicity, the number of states is fixed to two. This 

results are in concordance with observations reported in others 

papers, like in [23], where the authors report that with cepstral 

analysis a fault can be detected and its nature identified with a 

certain amount of confidence, as well as frequency domain 

techniques are adequate to identify faults, but does not work 

properly to determine the component of bearing which is 

defective. 

(i) 

 

TABLE I 

 FEATURE-DOMAIN ANALYSIS FOR TYPE OF FAULT CLASSIFICATION. SOURCE: 

AUTHORS 

Domain 𝓠 Ball Inner Normal Outer 

T
 

2 1.000±0.000 0.920±0.121 1.000±0.000 0.960±0.047 

3 1.000±0.000 0.973±0.047 1.000±0.000 0.960±0.084 

F
 

2 0.987±0.042 0.913±0.077 0.960±0.084 0.980±0.032 

3 1.000±0.000 0.940±0.058 0.940±0.190 0.967±0.065 

M
 2 0.993±0.021 1.000±0.000 1.000±0.000 1.000±0.000 

3 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 

T
F

 2 1.000±0.000 1.000±0.000 1.000±0.000 0.973±0.047 

3 1.000±0.000 0.980±0.032 1.000±0.000 0.953±0.055 

T
M

 2 1.000±0.000 0.960±0.056 1.000±0.000 0.967±0.035 

3 1.000±0.000 0.980±0.063 1.000±0.000 0.973±0.034 

F
M

 2 1.000±0.000 0.947±0.053 0.980±0.063 0.987±0.042 

3 1.000±0.000 0.953±0.063 0.980±0.063 0.987±0.028 

T
F

M
 2 0.993±0.021 0.960±0.084 0.980±0.063 0.953±0.045 

3 1.000±0.000 0.967±0.057 1.000±0.000 0.940±0.066 

 

TABLE II 
FEATURE-DOMAIN ANALYSIS FOR SEVERITY LEVEL CLASSIFICATION WITHIN 

EACH BEARING FAULT. SOURCE: AUTHORS 

Domain 𝓠 Ball Inner Outer 

T
 

2 0.840±0.145 1.000±0.000 1.000±0.000 

3 0.860±0.093 1.000±0.000 0.980±0.063 

F
 

2 0.920±0.090 1.000±0.000 0.980±0.051 

3 0.927±0.111 1.000±0.000 0.960±0.084 

M
 2 1.000±0.000 1.000±0.000 0.960±0.063 

3 0.920±0.051 1.000±0.000 1.000±0.000 

T
F

 2 0.873±0.125 1.000±0.000 1.000±0.000 

3 0.827±0.108 1.000±0.000 1.000±0.000 

T
M

 2 0.867±0.138 1.000±0.000 0.980±0.063 

3 0.660±0.250 1.000±0.000 1.000±0.000 

F
M

 2 0.820±0.114 1.000±0.000 0.973±0.064 

3 0.900±0.144 1.000±0.000 0.973±0.047 

T
F

M
 2 0.893±0.113 1.000±0.000 1.000±0.000 

3 0.907±0.110 1.000±0.000 0.980±0.063 
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(ii) 

 

(iii) 

 
Fig. 2.  Feature relevance analysis for type of fault and severity level 

diagnosis. Severity level classification performance: Ball (+), Inner (o), 

Normal (∗), Outer (x). Source: Authors. 

 

 

 

(i) 

(ii) 

 

(iii) 

 
Fig. 3.  Forward feature relevance analysis for type of fault and severity. 

Severity level classification performance: Ball (+), Inner (o), Normal (∗), 

Outer (x). Source: Authors. 

 

(i) 
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(ii) 

 

 

(iii) 

 
Fig. 4.  Backward feature relevance analysis for type of fault and severity. 

Severity level classification performance: Ball (+), Inner (o), Normal (∗), 

Outer (x). Source: Authors. 

 

Table III presents the bearing fault classification results by 

applying both HHMM over the relevant feature subset (RF-

HHMM) and HHMM over the whole multi-domain feature set 

(WS-HHMM). As seen, the RF-HHMM preserves the diagnosis 

performance in comparison to the WS-HHMM. Indeed, the 

estimated feature set is able to find out relevant patterns for 

identifying complex classes, e.g., Ball and Outer faults at level 

L1. The worst classification performance is obtained for Ball 

fault at level 3 for both studied strategies (0.87 and 0.84). Then, 

the WS-HHMM and the RF-HHMM mean results (0.975 and 

0.981, respectively) demonstrate that bearing fault dynamics 

can be differentiated from vibration signals if a relevant feature 

subset is estimated for both fault type and severity level. In 

addition, since the probability of detection of a failure type is 

100% in both schemes, the conditional probability of detecting 

a severity level is independent of the failure type. 
TABLE III 

HHMM-BASED BEARING FAULT DIAGNOSIS. WS: WHOLE MULTI-DOMAIN 

FEATURE SET, RF: RELEVANT FEATURE SET. L1, L2, AND L3 STAND FOR LOW, 

MIDDLE, AND HIGH SEVERITY LEVEL. SOURCE: AUTHORS. 
Strategy Layer Ball Inner Outer Normal Total 

W
S

-H
H

M
M

 

1 1.00±0.00 1.00±0.00 1.00±0.00 

1.0±0.0 

 

2, L1 0.91±0.15 1.00±0.00 0.84±0.26  

2, L2 0.99±0.04 1.00±0.00 1.00±0.00  

2, L3 0.87±0.15 1.00±0.00 1.00±0.00  

Total 0.94±0.11 1.00±0.00 0.96±0.09 1.0±0.0 0.975 

R
F

-H
H

M
M

 

1 1.00±0.00 1.00±0.00 1.00±0.00 

1.0±0.0 

 

2, L1 0.93±0.15 1.00±0.00 0.95±0.18  

2, L2 0.98±0.06 1.00±0.00 1.00±0.00  

2, L3 0.84±0.17 1.00±0.00 0.99±0.06  

Total 0.94±0.10 1.00±0.00 0.99±0.07 1.0±0.0 0.981 

ANFIS[10]      0.970 

 

Previous achieved results are in accordance with the approach 

presented by authors in [10], where a Discrete Wavelet 

Transform (DWT) and an Adaptive Neural Fuzzy Inference 

System (ANFIS) approach was proposed to automate the fault 

detection and diagnosis process, and a mean average 

classification of 0.97 is reported classifying the same data base. 

This ANFIS is based on a 5-layer system, where layer 1 

implement the fuzzification, layer 2 is a fuzzy AND operation, 

layer 3 is normalization, layer 4 is fuzzy inference, and finally, 

layer 5 is a defuzzification layer. Authors in paper [10] do not 

report results per severity level or fault type, but only for overall 

process. 

V. CONCLUSION 

Individually, the characteristics in each representation 

domain provide diverse variability in the discrimination process 

in both layers. While the characteristics of F-domain behave 

uniformly in all layers, in M-domain they show a different 

behavior between layers. In addition, individually, the 

characteristics of the F and M domains present better results 

when detecting levels of severity. 

On the other hand, the number of features required in each 

domain, to obtain diagnostic accuracy comparable to having the 

entire feature set, can be appreciably reduced. This justifies the 

need to use several representation domains and reduced sets of 

characteristics. Furthermore, the proposed two-layer model 

with different representation domains in each and a reduced set 

of features, has a diagnostic accuracy comparable to the same 

model using the full set of features. 

According to the results obtained, the time-frequency-based 

features are the most relevant for separating the type of fault 

and the frequency-based parameters favor the discriminations 

between levels of severity. Moreover, achieved results are in 

accordance with the state of art ones. However, our strategy is 

able to extract a relevant subset of features which favors further 

learning stages by coding complex data relationships related to 

hidden interactions between fault type and severity level. 
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