Scientia et Technica Año XXVIII, Vol. 29, No. 04, Octubre–diciembre de 2024. Universidad Tecnológica de Pereira.
and reproduction of the tropical earthworm
Pontoscolex corethrurus (Müller, 1857),” Applied Soil
Ecology, vol. 155, no. July 2019, p. 103648, 2020, doi:
10.1016/j.apsoil.2020.103648.
[24] Y. P. Setyawan, M. Naim, A. D. Advento, and J. P.
Caliman, “The effect of pesticide residue on mortality
and fecundity of Elaeidobius kamerunicus (Coleoptera:
Curculionidae),” IOP Conference Series: Earth and
Environmental Science, vol. 468, no. 1, 2020, doi:
10.1088/1755-1315/468/1/012020.
[25] G. Belutti et al., “Phytotoxicity and Growth of Coffee
Plants As a Function of The Application of Herbicide
2,4-D,” Coffee Science, vol. 14, no. 4, pp. 438–445,
2019.
[26] D. Toledo, A. de Oliveira, G. Belutti, T. Teruel, P.
Menicucci, and R. J. Guimarães, “Growth, anatomy
and physiology of coffee plants intoxicated by the
herbicide glyphosate,” Coffee Science, vol. 14, no. 1,
pp. 76–82, 2019, doi: 10.25186/cs.v14i1.1530.
[27] D. Toledo et al., “Selectivity of the herbicide
chlorimuron ethylcastanhon young coffee plants,”
Coffee Science, vol. 14, no. 4, pp. 467–472, 2019, doi:
10.25186/cs.v14i4.1615.
[28] L. Parra, J. Marin, S. Yousfi, G. Rincón, P. V. Mauri,
and J. Lloret, “Edge detection for weed recognition in
lawns,” Computers and Electronics in Agriculture, vol.
176, no. July, 2020, doi:
10.1016/j.compag.2020.105684.
[29] C. A. Pulido-Rojas, M. A. Molina-Villa, and L. E.
Solaque-Guzmán, “Machine vision system for weed
detection using image filtering in vegetables crops,”
Revista Facultad de Ingenieria, vol. 2016, no. 80, pp.
124–130, 2016, doi: 10.17533/udea.redin.n80a13.
[30] X. E. Pantazi, D. Moshou, and C. Bravo, “Active
learning system for weed species recognition based on
hyperspectral sensing,” Biosystems Engineering, vol.
146, pp. 193–202, 2016, doi:
10.1016/j.biosystemseng.2016.01.014.
[31] R. Raja et al., “Crop signalling: A novel crop
recognition technique for robotic weed control,”
Biosystems Engineering, vol. 187, pp. 278–291, 2019,
doi: 10.1016/j.biosystemseng.2019.09.011.
[32] A. dos Santos Ferreira, D. M. Freitas, G. G. da Silva,
H. Pistori, and M. T. Folhes, “Unsupervised deep
learning and semi-automatic data labeling in weed
discrimination,” Computers and Electronics in
Agriculture, vol. 165, no. July, 2019, doi:
10.1016/j.compag.2019.104963.
[33] T. Kounalakis, G. A. Triantafyllidis, and L.
Nalpantidis, “Deep learning-based visual recognition
of rumex for robotic precision farming,” Computers
and Electronics in Agriculture, vol. 165, no. August,
2019, doi: 10.1016/j.compag.2019.104973.
[34] J. Yu, S. M. Sharpe, A. W. Schumann, and N. S. Boyd,
“Deep learning for image-based weed detection in
turfgrass,” European Journal of Agronomy, vol. 104,
no. November 2018, pp. 78–84, 2019, doi:
10.1016/j.eja.2019.01.004.
[35] K. Hu, G. Coleman, S. Zeng, Z. Wang, and M. Walsh,
“Graph weeds net: A graph-based deep learning
method for weed recognition,” Computers and
Electronics in Agriculture, vol. 174, no. April, 2020,
doi: 10.1016/j.compag.2020.105520.
[36] H. Jiang, C. Zhang, Y. Qiao, Z. Zhang, W. Zhang, and
C. Song, “CNN feature based graph convolutional
network for weed and crop recognition in smart
farming,” Computers and Electronics in Agriculture,
vol. 174, no. April, p. 105450, 2020, doi:
10.1016/j.compag.2020.105450.
[37] R. Raja, T. T. Nguyen, D. C. Slaughter, and S. A.
Fennimore, “Real-time weed-crop classification and
localisation technique for robotic weed control in
lettuce,” Biosystems Engineering, vol. 192, pp. 257–
274, 2020, doi: 10.1016/j.biosystemseng.2020.02.002.
[38] R. Raja, T. T. Nguyen, V. L. Vuong, D. C. Slaughter,
and S. A. Fennimore, “RTD-SEPs: Real-time detection
of stem emerging points and classification of crop-
weed for robotic weed control in producing tomato,”
Biosystems Engineering, vol. 195, pp. 152–171, 2020,
doi: 10.1016/j.biosystemseng.2020.05.004.
[39] T. Ashraf and Y. N. Khan, “Weed density classification
in rice crop using computer vision,” Computers and
Electronics in Agriculture, vol. 175, no. June, 2020,
doi: 10.1016/j.compag.2020.105590.
[40] D. G. Kim, T. F. Burks, J. Qin, and D. M. Bulanon,
“Classification of grapefruit peel diseases using color
texture feature analysis,” International Journal of
Agricultural and Biological Engineering, vol. 2, no. 3,
pp. 41–50, 2009, doi: 10.3965/j.issn.1934-
6344.2009.03.041-050.
[41] A. Cravero, S. Pardo, S. Sepúlveda, and L. Muñoz,
“Challenges to Use Machine Learning in Agricultural
Big Data: A Systematic Literature Review,” Mar. 01,
2022, MDPI. doi: 10.3390/agronomy12030748.
[42] P. Dini and S. Saponara, “Analysis, design, and
comparison of machine-learning techniques for
networking intrusion detection,” Designs (Basel), vol.
5, no. 1, pp. 1–22, 2021, doi: 10.3390/designs5010009.
[43] C. Ji, T. B. Mudiyanselage, Y. Gao, and Y. Pan, “A
review of infant cry analysis and classification,” Dec.
01, 2021, Springer Science and Business Media
Deutschland GmbH. doi: 10.1186/s13636-021-00197-
5.
[44] I. Attri, L. K. Awasthi, and T. P. Sharma, “Machine
learning in agriculture: a review of crop management
applications,” Multimed Tools Appl, vol. 83, no. 5, pp.
12875–12915, Feb. 2024, doi: 10.1007/s11042-023-
16105-2.
[45] M. J. Al Dujaili, A. Ebrahimi-Moghadam, and A.
Fatlawi, “Speech emotion recognition based on SVM
and KNN classifications fusion,” International Journal
of Electrical and Computer Engineering, vol. 11, no. 2,
pp. 1259–1264, Apr. 2021, doi:
10.11591/ijece.v11i2.pp1259-1264.
[46] Y. Mu et al., “DenseNet weed recognition model
combining local variance preprocessing and attention
mechanism,” Front Plant Sci, vol. 13, Jan. 2023, doi:
10.3389/fpls.2022.1041510.
[47] M. H. Saleem, J. Potgieter, and K. M. Arif,
“Automation in Agriculture by Machine and Deep