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   1Abstract—Programmable Logic Controllers (PLC) are 

an essential part of automated industrial production 

processes since their first implementation, so 

understanding the IEC 61131 standard and, above all, 

section three defines the programming languages allowed 

by PLCs take relevance over time. This work describes 

each of the programming languages described in IEC 

61131-3. Additionally, it implements an automation system 

based on Structured Text with a Human Machine 

Interface (HMI). The plant is a temperature process with a 

classic control system developed using Matlab tools, such 

as System Identification, PID Tuner, and Simulink. For 

the HMI, was implemented the Codesys Group industrial 

automation process platform. The Simulink PLC Coder 

toolbox allows the strengthening of the connection between 

the control system and the HMI.  This program generates 

the Structured Text of a control system developed in 

Simulink. For the analysis of results, the control behavior 

compared between Simulink and the system produced in 

Codesys Group obtained an error of less than 0.34%. 

 

Index Terms— Classic Control, IEC 61131-3, Simulink PLC 

Coder, Structured Text, Programmable Logic Controllers. 

 

 

Resumen— Los Controladores Lógicos Programables (PLC) 

son una parte esencial de los procesos de producción industrial 

automatizada desde su primera implementación, por lo que la 

comprensión del estándar IEC 61131 y, sobre todo, la sección tres 

que define los lenguajes de programación que permiten que los 

PLC toman relevancia con el tiempo. Este trabajo describe cada 

uno de los lenguajes de programación descritos en el estándar 

IEC 61131-3. Además, implementa un sistema de automatización  
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basado en texto estructurado con una interfaz hombre-

máquina (HMI). La planta es un proceso de temperatura con un 

sistema de control clásico desarrollado con herramientas de 

Matlab, como System Identification, PID Tuner y Simulink. Para 

la HMI, se implementó la plataforma de procesos de 

automatización industrial del Grupo Codesys. El toolbox 

Simulink PLC Coder permite reforzar la conexión entre el 

sistema de control y el HMI. Este programa genera el Texto 

Estructurado de un sistema de control desarrollado en Simulink. 

Para el análisis de resultados, el comportamiento del control 

comparado entre Simulink y el sistema producido en Codesys 

obtuvo un error inferior al 0,34%. 

 

 Palabras claves— Control Clásico, IEC 61131-3, Simulink 

PLC Coder, Lenguaje Estructurado, Controladores Lógicos 

Programables. 

 

I. INTRODUCTION 

 

OR diversification, technology control systems require the 

incorporation of electronic, electrical, information, and 

advanced manufacturing technologies in the means of 

production for the automation and digitization of processes, 

which is a requirement for new models of energy business and 

an opportunity for government-academia (research) -industrial 

technology synchrony in a sector that in its transition seeks to 

integrate: renewable sources, direct current (DC) transport 

systems, energy storage, distributed generation, measurement 

systems, smart grids and the participation of end-users. 

Elements, in their structure, are associated with new energy 

generation and efficiency technologies, such as those targeted 

by Industry 4.0, which has different technological trends. 

Since their creation in the 60s, Programmable Logic 

Controllers (PLC) have become indispensable devices when 

carrying out an automation process and are relevant elements 

in the challenges proposed by the industry. In the same way, 

their constant updating, not only at the hardware level but at 

the level of software and programming languages, allow these 

instruments to keep at the forefront to the point of being seen 

as an ideal option to face the fourth industrial revolution, 

where, reduction of production times, optimization of the 

levels of quality and resources used will allow us to enter into 

this revolution; and, in turn, lead the industry to focus on 

caring for the environment [1]. 

Temperature control using the simulink PLC 

Coder and the IEC 61131 standard 
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This article analyzes the IEC 61131-3 standard based on 

each of the programming languages it describes, in addition to 

implementing a controller through the use of industrial tools 

such as Simulink PLC Coder and CODESYS. The objective is 

to adopt a temperature control to an HMI through Structured 

Text. The temperature control is carried out in Simulink, 

employing the Toolbox Simulink PLC Coder that generates 

the high-level programming structure. Finally, the HMI is 

built and programmed in Codesys using the previously 

obtained Structured Text. 

 

II. STANDART IEC 61131-3 

 

Section of the IEC 61131 standard created by the 

International Electrotechnical Commission (IEC). This 

standard defines the five programming languages for 

Programmable Logic Controllers (PLC) to obtain order when 

carrying out an industrial automation process through these 

devices. The IEC standard determines the programming 

languages: Ladder Diagram, Function Block Diagram (FBD), 

Instruction List (IL), Structured Text (ST), and Sequential 

Function Chart (SFC) [2]. 

Define abbreviations and acronyms the first time they are 

used in the text, even after they have already been defined in 

the abstract. Abbreviations such as IEEE, SI, ac, and dc do not 

have to be defined. Abbreviations that incorporate periods 

should not have spaces: write “C.N.R.S.,” not “C. N. R. S.” 

Do not use abbreviations in the title unless they are 

unavoidable (for example, “IEEE” in the title of this article). 

 

A. Ladder Diagram 

 

Designed primarily for processing Boolean signals using 

power rail delimited graphical symbols that together resemble 

steps in a ladder logic diagram. The Ladder programming 

language allows, through the use of contact logic, to connect 

elements in series (AND) or in parallel (OR), which contribute 

to the flow or interruption of energy to supply an output called 

coil [3]. 

 

B. Function Block Diagram (FBD) 

 

Based on the standard, today retired, IEC 60617-12, the 

FBD programming language defines a series of graphic 

elements. These elements allow the generation of a structure 

that from rectangular boxes with inputs, outputs, and flow 

statements of control they manage to carry out logical, 

arithmetic expressions or calls a function block so that once 

interconnected employing signal flow lines they can feed the 

outputs of the system [4]. 

 

C. Instruction List (IL) 

 

The IL programming language, considered a low-level 

programming language, consists of a progression of 

instructions made up of modifiers and operations. These 

instructions aim that when carried out, they recreate a list of 

instructions. Even though its rapid processing makes one of its 

main implementations that of control processes, the IEC has 

decided not to take it into account for its next update [5]. 

 

D. Structured Text (ST) 

 

The ST language is derived from the Pascal programming 

language, and it is considered, by the standards, as one of the 

high-level languages. The ST Language can control the 

command flow by variables, expressions, or declarations of 

type selection, iterations, complex mathematical formulas, or 

calculations; it is easy for a programmer to apply and 

understand [6] [7]. 

 

E. Sequential Function Chart (SFC) 

 

The SFC was created to divide a more complex program 

into small manageable units. SFC graphically describes the 

control flow between systems using stages and transitions to 

design sequential and parallel processes. The SFC language 

allows the visualization of the dependencies or 

interdependencies of the laps according to the process 

location. It also releases programming its units in the 

programming languages mentioned above [8] [9]. 

 

III. CONTROLLER WITH HMI 

 

The proposed methodology was divided into six stages. 

The flow charts in Fig. 1, Fig. 2 and Fig. 3 describe the six 

stages. 

 

A. Stage 1: Obtaining the transfer function in discrete time 

 

It is necessary to establish the behavior of the system to be 

analyzed to obtain the transfer function. Fig. 4 presents the 

heating curve of the selected system; this curve was generated 

by laboratory tests. The minimum temperature reached was 

24.93 °C, and the maximum was 78.2 °C.  

With the Matlab System Identification toolbox, the heating 

curve of the thermal plant, and the supply voltage, the data is 

processed to obtain the transfer function in the continuous-

time domain (1), gathering a 96.03% correspondence.  

Employing the Matlab c2d command the transfer function is 

obtained in the discrete-time domain (2), using the Tustin 

discretization method. Fig. 4 represents the system heating 

curve and the discrete-time transfer function curve. 
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Fig. 1. Stage 1, 2 and 3 of the design and implementation of the controller 
with HMI. Own Work 

 

Fig. 2. Stage 4 of the design and implementation of the controller with HMI. 
Own Work 

 

 

Fig. 3. Stage 5 and 6 of the design and implementation of the controller with 
HMI. Own Work 
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Fig. 4.  Plant heating curve and discrete transfer function. Own Work 

 

B. Stage 2: Obtaining the constants of the classical controller 

 

Using the PID Tuner toolbox on the transfer function in the 

discrete-time domain, a PI controller is implemented that 

adjusts to the system under study. A fast response time and a 

robust transient behavior are selected, obtaining the constants 

of proportionality and integrity described in Table I and an 

output behavior as observed in Fig. 5.  

 
TABLE I 

CLASSIC CONTROLLER CONSTANTS 

Constant Values 

Constant of proportionality (Kp) 0.49989 

Integrity constants (Ki) 0.45537 

 

 

Fig. 5. The behavior of the plant with a PI controller. Own Work 

 

C. Stage 3: Design and simulation of the plant architecture 

in the Simulink environment 

 

Using the Simulink block diagram environment, the system 

behavior is simulated, implementing the PI controller, as seen 

in Fig. 6 and Fig. 7 shows the behavior of the system with and 

without control when applying disruptions. 

 

 

Fig. 6. System modeling in Simulink. Own Work 

 

Fig. 7. Plant with PI control and without PI control with two disruptions. 

Own Work 

 

D. Stage 4: Installation and configuration of the Simulink 

PLC Coder toolbox 

 

The Matlab toolbox, Simulink PLC Coder, is a tool that 

allows the generation of programming code in ST language 

from Simulink models. It is possible to generate the 

programming code in 15 different simulators, including 

Codesys 3.5 [10]. Fig. 8 presents the programming code 

obtained through Simulink PLC Coder for the controller 

described in Fig. 6. 

 

 

Fig. 8. Programming code generated by Simulink PLC Coder. Own Work 

 

E. Stage 5: Adaptation of the code generated in the Codesys 

environment 

 

Some modifications are required to implement the 

programming code generated by Simulink PLC Coder in the 

Codesys interface; adjustments such as, change the global 

variables of constant type for general global variables to 

modify their state once the project is carried out. Additionally, 

in ST is created a statement that represents the feedback of the 

system of Fig. 6. The Simulink PLC Coder toolbox does not 

have the support to generate the closed-loop so that it is 

necessary to make that adjustment. Fig. 9 presents the 

programming code obtained with closed-loop. 
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Fig. 9. Programming code with feedback. Own Work 

 

F. Stage 6: Comparison of the Simulink and Codesys output 

curves 

 

To determine qualitatively and quantitatively the graphs 

obtained in Simulink and Codesys, it was necessary to carry 

out three case studies to find the percentage of error between 

them. So, scenarios are analyzed where the behavior of each 

of the graphs is compared at specific points. These scenarios 

are: 

 

1) Initial maximum temperature: The maximum temperature 

that the plant reaches during the heating process at the initial 

setpoint.  

 

2) Initial maximum temperature: The maximum temperature 

that the plant reaches during the heating process at the initial 

setpoint.  

 

3) Maximum temperature in the disruption: The maximum 

temperature that the plant reaches when it is applied disruption 

to the system.  

 

4) The maximum temperature change of the setpoint: The 

maximum temperature that the plant reaches when 

establishing a new value of the setpoint. 

 

5) Stabilization: Temperature registered by the plant when 

stabilizing at the second setpoint. 

 

6) Before the disturbance: The indicated temperature by the 

plant before the disruption occurs. 

 

7) Before the setpoint changes: The recorded temperature by 

the plant before the setpoint change occurs.  

 

From (3) is found the percentage of error between behaviors. 

 

%

Simulink CODESYS

Simulink

T T
e

T

−
=  (3) 

Where: 

TSimulink: Temperature recorded by Simulink 

TCodesys: Temperature recorded by Codesys. 

 

Case 1: Disruption and positive setpoint 

 

The behavior and results obtained in Fig. 10 and Table II 

relate the curves produced by Simulink and Codesys from 

assigning a negative setpoint and disturbance. These results 

are from the following parameters: 

 

▪ From the beginning of the code implementation, it 

establishes an initial setpoint of 30°C. 

▪ Disruption generation of 20 °C within 120 seconds of 

executing the code. 

▪ Updating the setpoint to 60 °C within 200 seconds of 

carrying out the code.  

 

 

Fig. 10. The heating curve obtained from the Codesys (blue) and Simulink 

(green) software for positive disruption and setpoint. Own Work 

 

TABLE II 

ERRORS BETWEEN SIMULINK AND CODESYS FOR HEATING CURVE TIMES 

DETERMINED WITH POSITIVE DISTURBANCE AND SETPOINT 

Action of interest Time [s] 
T. Codesys 

[°C] 

T. Simulink 

[°C] 
Error [%] 

Max. initial Temp. 41 31.4846 31.390 0.3010 

Max. disruption 

Temp. 
120 50.4341 49.0293 2.8652 

Max change setpoint 

Temp. 
241 61.1377 61.1775 0.1281 

Stabilization 379 60.1377 60.1431 0.0089 

Before the 

disruption 
119 30.4415 30.4518 0.3382 

Before the setpoint 

change 
199 29.5427 29.5249 0.0602 

 

Case 2: Disturbance and negative setpoint 

 

The behavior and results obtained in Fig. 11 and Table III 

relate the curves produced by Simulink and Codesys, the error 

percentages obtained in each of them, from assigning a 

negative setpoint and disruption. These results are from the 

following parameters: 

 

▪ From the beginning of the code completion, it establishes 

an initial setpoint of 50°C. 

▪ Generation of a disruption of -20 °C within 120 seconds 

of executing the code. 

▪ Updating the setpoint to 30 °C within 200 seconds of 

implementing the code. 
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Fig. 11. The heating curve obtained from the Codesys (blue) and Simulink 

(green) software for a negative disruption and setpoint. Own Work 

 

TABLE III 

ERRORS BETWEEN SIMULINK AND CODESYS FOR DETERMINED HEATING 

CURVE TIMES WITH NEGATIVE DISTURBANCE AND SETPOINT 

Action of interest 
Time 

[s] 

T. Codesys 

[°C] 

T. Simulink 

[°C] 
Error [%] 

Max. initial Temp. 43 52.4471 52.3377 0.2090 

Max. disruption 

Temp. 
120 30.5275 32.1553 5.0623 

Max change 

setpoint Temp. 
248 29.4014 29.4275 0.08869 

Stabilization 379 29.9299 29.9271 0.00935 

Before the 

disruption 
119 50.7358 50.753 0.03388 

Before the setpoint 

change 
199 50.7685 50.785 0.03248 

 

Case 3: Positive disturbance and negative setpoint 

 

The behavior and results recorded in Fig. 12 and Table IV 

relate the curves produced by Simulink and Codesys and the 

error percentages obtained in each of them from assigning a 

positive disturbance and a negative setpoint. These results are 

from the following parameters: 

▪ From the beginning of the code execution, it sets down 

an initial setpoint of 40°C. 

▪ Generation of a 30 °C disruption within 120 seconds 

after having implemented the code. 

▪ Updating the setpoint to 28 °C within 200 seconds of 

having executed the code.  

 

 
Fig. 12. The heating curve obtained from the Codesys (blue) and Simulink 

(green) software for positive disruption and negative setpoint. Own work 

TABLE IV 

ERRORS BETWEEN SIMULINK AND CODESYS FOR HEATING CURVE TIMES 

DETERMINED WITH POSITIVE DISTURBANCE AND NEGATIVE SETPOINT 

Action of interest 
Time 

[s] 

T. Codesys 

[°C] 

T. Simulink 

[°C] 

Error 

[%] 

Max. initial Temp. 44 41.9431 41.8701 0.1743 

Max. disruption 

Temp. 
120 70.5788 68.4699 3.0800 

Max change 

setpoint Temp. 
237 27.0289 27.0732 0.1636 

Stabilization 379 27.9021 27.9000 0.0075 

Before the 

disruption 
119 40.5887 40.6024 0.0034 

Before the setpoint 

change 
119 39.2835 39.268 0.0395 

 

G. Human-Machine Interface (HMI) 

 

Employing the visualization manager of the Codesys 

software is possible to present the most relevant information 

on the plant control process. This visualization manager 

allows the user to observe the current status of the thermal 

plant; it also has the freedom to assign a new setpoint and 

disruption value if required. In that sense, three screens are 

designed to have total control of the plant. These screens are 

the presentation screen, control-display screen, and control-

management screen. 

 

1) Presentation screen: The presentation screen defines the 

name and title of the project, the names of the developers, and 

the institutional affiliation (Fig. 13). 

 

 

Fig. 13. HMI splash screen layout. Own Work 

 

2) Control-display screen: In the control and visualization 

screen, the user can identify the current behavior of the 

thermal plant and the disturbances that have been generated, 

comparing the setpoint established with the current 

temperature of the plant. In the same way, it displays the on or 

off status of the plant, the current temperature value inside it, 

and the error, in Celsius degrees. Finally, it has the option of 
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establishing a new setpoint value and generating disruptions in 

the system; it also allows turning the plant on or off (Fig. 14). 

 

 

Fig. 14. Design of the HMI presentation and control screen. Own Work 

 

3) Control-management screen: The control and 

management screen allows determining, from the activation of 

the indicators and a bar-shaped temperature chart, the current 

status of the plant from the temperature registered inside it. So 

that the thermal scale is divided into five ranges: very high, 

high, medium, low, or very low. Using two additional 

indicators, the user could determine if the system is stable or if 

a setpoint has been established outside the allowed range; and 

identify which does not guarantee the correct operation of the 

control (Fig. 15). 

Finally, the user can set a new setpoint value and display 

the error of the current work. 

 

 

Fig. 15. Design of the HMI control and management screen. Own Work 

 

IV. GENERATED MATERIAL 

 

Table V shows the name and the corresponding links to the 

videos that complement the explanation of the stages 

implemented. 

 

 

 

 

 

 

TABLE V 

ERRORS BETWEEN SIMULINK AND CODESYS FOR HEATING CURVE TIMES 

DETERMINED WITH POSITIVE DISTURBANCE AND NEGATIVE SETPOINT 

Stage Link 

1 https://youtu.be/T6r58dViQyY 

2 https://youtu.be/f072iUgtzAo  

3 https://youtu.be/6WTzW24Uufk  

4 https://youtu.be/WOqBgep14i0  

5 https://youtu.be/giOsijFyxpM 

6 https://youtu.be/m3Bhq1Ikpio  

 

V. CONCLUSION 

 

From the programming languages presented in the IEC 

61131-3 standard, it is possible to highlight the facilities that 

come with developing a project in high-level programming 

languages (ST and SFC). The ST has selection type and 

iteration type structures; the similarity between the 

programming syntax with languages such as C ++, Matlab or 

Python, makes the adaptability for a programmer who does 

not know the standard more enjoyable. The SFC simplifies 

projects where sequential, combinational, and parallel systems 

predominate. 

Analyzing the tables, It determinates that the error of the 

results obtained from the simulated system in Codesys and the 

system simulated in Simulink is less than 0.34% in all its 

measurements, except for the one generated in the peak of 

maximum or minimum disruption. 
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