Scientia et Technica Año XXVIII, Vol. 28, No. 02, abril-junio de 2023. Universidad Tecnológica de Pereira
where �
�����
represents the annual energy cost in
COP,
�
���
is the cost of the energy transport of the National
interconnected system in COP/kWh, �
����
is power system
losses, �
�
corresponds to the hours in a day, and �
�����
denotes the days of the year.
The �
���
in September of 2022 was 50.8461 COP/kWh,
which is used to compute the �
�����
. The total power losses
with and without STATCOM devices in the power system are
5.96 MW and 6.47 MW, respectively. The annual cost of
energy with and without STATCOM devices are 2.654.858
COP and 2.882.035 COP, respectively. Thus, based on this
study case, the STATCOM device reduces the energy cost in
the power system by 7.82%.
VI.
CONCLUSIONS
The implementation of the STATCOM device greatly
reduced the losses of the power system analyzed and improves
the system performance. The effectiveness of the STATCOM
device is remarkable both in its decrease in losses in the
electrical system and the decrease in operating costs.
Therefore, the implementation of this device is linked to the
budget or the level of investment available to the utility to
improve its service.
REFERENCES
[1]. J. Kogan and D. Bondorevsky, “La infraestructura en el desarrollo de
américa latina,” Economía y desarrollo, vol. 156, no. 1, pp. 168–186,
2016.
[2]. S. Abhinav and B. C. Pal, Dynamic estimation and control of power
systems. Academic Press, 2018.
[3]. M. Eremia, C.-C. Liu, and A.-A. Edris, Advanced solutions in power
systems: HVDC, FACTS, and Artificial Intelligence. John Wiley & Sons,
2016. DOI: 10.1002/9781119175391
[4]. A. Pillay, S. P. Karthikeyan, and D. Kothari, “Congestion management
in power systems–a review,” International Journal of Electrical Power
& Energy Systems, vol. 70, pp. 83–90, 2015. DOI:
10.1016/j.ijepes.2015.01.022
[5]. S.-H. Song, J.-U. Lim, and S.-I. Moon, “Installation and operation of
facts devices for enhancing steady-state security,” Electric Power
Systems Research, vol. 70, no. 1, pp. 7–15, 2004. DOI:
10.1016/j.epsr.2003.11.009.
[6]. S. Rahimzadeh and M. T. Bina, “Looking for optimal number and
placement of facts devices to manage the transmission congestion,”
Energy conversion and management, vol. 52, no. 1, pp. 437–446, 2011.
DOI: 10.1016/j.enconman.2010.07.019
[7]. S. Thangalakshmi and P. Valsalal, “Congestion management using
hybrid fish bee optimization,” Journal of Theoretical & Applied
Information Technology, vol. 58, no. 2, 2013.
[8]. M. Mumtaz, S. I. Khan, W. A. Chaudhry, and Z. A. Khan, “Harmonic
incursion at the point of common coupling due to small grid-connected
power stations,” Journal of Electrical Systems and Information
Technology, vol. 2, no. 3, pp. 368–377, 2015. DOI:
10.1016/j.jesit.2015.06.005
[9]. M. Katira and K. Porate, “Computer simulation of 132/11 kv distribution
substation using static var compensator (svc) for voltage enhancement a
case study,” in 2009 Second International Conference on Emerging
Trends in Engineering & Technology. IEEE, 2009, pp. 521–526. DOI:
10.1109/ICETET.2009.61
[10]. S. Hameed and P. Garg, “Improvement of power system stability using
genetically optimized svc controller,” International Journal of System
Assurance Engineering and Management, vol. 5, no. 4, pp. 475–486,
2014. DOI: 10.1007/s13198-014-0233-6
[11]. A. Sode-Yome, N. Mithulananthan, and K. Y. Lee, “Static voltage
stability margin enhancement using statcom, tcsc and sssc,” in 2005
IEEE/PES Transmission & Distribution Conference & Exposition: Asia
and Pacific. IEEE, 2005, pp. 1–6. DOI: 10.1109/TDC.2005.1547141
[12]. S. M. Sajjadi, M.-R. Haghifam, and J. Salehi, “Simultaneous placement
of distributed generation and capacitors in distribution networks
considering voltage stability index,” International Journal of Electrical
Power & Energy Systems, vol. 46, pp. 366–375, 2013. DOI:
10.1016/j.ijepes.2012.10.027
[13]. S. Sreedharan, T. Joseph, S. Joseph, C. V. Chandran, J. Vishnu, and V.
Das, “Power system loading margin enhancement by optimal statcom
integration-a case study,” Computers & Electrical Engineering, vol. 81,
p. 106521, 2020. DOI: 10.1016/j.compeleceng.2019.106521
[14]. S. Abd-Elazim and E. Ali, “Optimal location of statcom in multimachine
power system for increasing loadability by cuckoo search algorithm,”
International Journal of Electrical Power & Energy Systems, vol. 80,
pp. 240–251, 2016. DOI: 10.1016/j.ijepes.2016.01.023
[15]. A. S. Siddiqui and T. Deb, “Voltage stability improvement using
statcom and svc,” International journal of computer applications, vol.
88, no. 14, 2014. DOI: 10.5120/15424-4070
[16]. S. Ratra, R. Tiwari, and K. R. Niazi, “Voltage stability assessment in
power systems using line voltage stability index,” Computers &
Electrical Engineering, vol. 70, pp. 199–211, 2018. DOI:
10.1016/j.compeleceng.2017.12.046
[17]. J. P. Rivera Barrera, “Modelamiento y simulación de dispositivos facts
para estudios eléctricos de estado estable,” 2008.
[18]. L. V. Agudelo Gallego and L. Ruíz Ochoa, “Identificación de las
ventajas, las desventajas y las características de los sistemas de
transmisión flexible (facts),” 2008.
[19]. O. A. Morfín-Garduño, L. A. Zavala-Rubio, F. Ornelas-Téllez, and R.
Ramírez-Betancour, “Compensación de potencia reactiva mediante el
control robusto de un statcom en un sistema de potencia,” Ingeniería,
investigación y tecnología, vol. 22, no. 3, pp. 0–0, 2021.DOI:
10.22201/fi.25940732e.2021.22.3.020
[20]. Empresa de energía de Bogotá S.A.S. E.S.P Colombia, “Impacto del
SVC tunal 230 kV en el sistema eléctrico de EEBEN 2015,” 2017.
[Online]. Available: https://docplayer.es/114850732-Empresa-de-
energia-de-bogota-s-a-e-s-p-colombia-impact\o-del-svc-tunal-230-kv-
en-el-sistema-electrico-de-eeb-2015-bogota-ag\osto-de-2017.html
[21]. E. P. de Medellín (EPM), “Facts modulares tecnología de la
transformación de la red,” 2021. [Online]. Available:
https://www.epm.com.co/site/con-la-nueva-tecnologia-d-facts-epm-se-
ubica-a-la-vanguardia-electric\a-en-america-latina
[22]. F. M. Gonzalez-Longatt and J. L. Rueda, PowerFactory applications for
power system analysis. Springer, 2014. DOI: 10.1007/978-3-319-12958-
7
Joseph Sosapanta Salas, was born in El
Tambo, Nariño, Colombia in 1990. He
received the degree in electrical
engineering from National University of
Colombia, in 2014 and the degree Master
in Electrical Engineering from the same
university in 2023. He also received the
MBA degree in 2021. Currently, the is a
full-time research professor at Institución
Universitaria Pascual Bravo. His research interest includes
power systems and renewable energy.
ORCID: https://orcid.org/0000-0002-2035-9323
Miyerladis Macias Gómez was born in Medellín, Antioquia,
Colombia. She received a degree in
electrical technology from the Institución
Universitaria Pascual Bravo. She is
currently studying for a B.Sc. degree in
Electrical Engineering from the same
university. His research interests include
Internet of Things applications, processing
automatization, and control in electrical
systems.
ORCID: https://orcid.org/0000-0002-7490-2061