Scientia et Technica Año XXVIII, Vol. 29, No. 02, abril-junio de 2024. Universidad Tecnológica de Pereira.
VII.
REFERENCES
[1] B. Bethi, S. H. Sonawane, B. A. Bhanvase, and S. S. Sonawane, “Textile
Industry Wastewater Treatment by Cavitation Combined with Fenton and
Ceramic Nanofiltration Membrane,” Chem. Eng. Process. - Process Intensif.,
vol. 168, p. 108540, 2021. DOI: 10.1016/j.cep.2021.108540
[2] D. Suteu, C. Zaharia, D. Bilba, R. Muresan, A. Popescu, and A. Muresan,
“Decolorization wastewaters from the textile industry – physical methods,
chemical methods,” Ind. textilă, vol. 60, pp. 254–263, Oct. 2009.
[3] L. F. Garcés Giraldo and G. A. Peñuela Mesa, “Cinética de degradación
y mineralización del colorante Naranja Reactivo 84 en aguas,” Rev. Lasallista
Investig., vol. 2, no. 2, pp. 21–25, May 2005.
[4] C. Zaharia and D. Suteu, “Textile Organic Dye: Characteristics, Polluting
Effects and Separation/Elimination Procedures from Industrial Effluents A
Critical Overview,” in Organic Pollutants Ten Years after the Stockholm
Convention - Environmental and Analytical Update, 2012. DOI:
10.5772/32373
[5] P. Soloman, C. Basha, V. Manickam, V. Ramamurthi, K. Koteeswaran,
and B. Subramanian, “Electrochemical Degradation of Remazol Black B Dye
Effluent,” CLEAN – Soil, Air, Water, vol. 37, pp. 889–900, Nov. 2009. DOI:
10.1002/clen.200900055
[6] F. Orts, A. I. del Río, J. Molina, J. Bonastre, and F. Cases,
“Electrochemical treatment of real textile wastewater: Trichromy Procion
HEXL®,” J. Electroanal. Chem., vol. 808, pp. 387–394, 2018. DOI:
10.1016/j.jelechem.2017.06.051
[7] R. Partal, I. Basturk, S. Murat Hocaoglu, A. Baban, and E. Yilmaz,
“Recovery of water and reusable salt solution from reverse osmosis brine in
textile industry: A case study,” Water Resour. Ind., vol. 27, p. 100174, 2022.
DOI: 10.1016/j.wri.2022.100174
[8] C. O. R. Dario, “Las microalgas y el tratamiento de aguas residuales:
conceptos y aplicaciones. Una revisión bibliográfica.,” Universidad Nacional
Abierta y a Distancia, 2016.
[9] J. Humanante, C. Deza, L. Moreno, and A. Grijalva, “Biorecovery of
wastewater with microorganisms,” Manglar, vol. 18, no. 4, pp. 346–356, 2021.
DOI:10.17268/manglar.2021.044
[10] R. Prince, J. Clark, and J. Lindstrom, “Field Studies Demonstrating the
Efficacy of Bioremediation in Marine Environments,” 2015.
DOI:10.1007/8623_2015_172
[11] J. Garzón, J. Rodriguez Miranda, and C. Gómez, “Aporte de la
biorremediación para solucionar problemas de contaminación y su relación con
el desarrollo sostenible,” Univ. y Salud, vol. 19, p. 309, Aug. 2017. DOI:
10.22267/rus.171902.93
[12] T. Fazal, M. S. U. Rehman, F. Javed, M. Akhtar, A. Mushtaq, A. Hafeez,
A. Alaud Din, J. Iqbal, N. Rashid, and F. Rehman, “Integrating bioremediation
of textile wastewater with biodiesel production using microalgae (Chlorella
vulgaris),” Chemosphere, vol. 281, p. 130758, 2021. DOI:
10.1016/j.chemosphere.2021.130758
[13] Y. Huaringa, V. Surco, and S. Contreras-Liza, “Biorremediacion
mediante la asociación entre microorganismos y plantas,” Repos. Rev. LA
Univ. Priv. PUCALLPA, vol. 1, Apr. 2017. DOI:10.37292/riccva.v1i02.23
[14] N. Muhamad, P. Soontornnon Sinchai, and U. Tansom, “Banana peel as
bioremediation agent in textile dyes decolorization for wastewater
management,” Biochem. Syst. Ecol., vol. 106, p. 104582, 2023. DOI:
10.1016/j.bse.2022.104582
[15] A. Parihar and P. Malaviya, “Textile wastewater phytoremediation using
Spirodela polyrhiza (L.) Schleid. assisted by novel bacterial consortium in a
two-step remediation system,” Environ. Res., vol. 221, p. 115307, 2023. DOI:
10.1016/j.envres.2023.115307
[16] M. del C. Gonzalez Chavez, “Alternativas de fitorremediación de
sitios contaminados con elementos potencialmente tóxicos.,” Mar. 2017.
[17] L. J. Rather, S. Akhter, and Q. P. Hassan, “Bioremediation: Green and
Sustainable Technology for Textile Effluent Treatment BT - Sustainable
Innovations in Textile Chemistry and Dyes,” S. S. Muthu, Ed. Singapore:
Springer Singapore, 2018, pp. 75–91. DOI:10.1007/978-981-10-8600-7_4
[18] D. İ. Çifçi and S. Meriç, “Chapter 19 - A critical review on biofiltration
for wastewater treatment: Focus on organic micropollutants,” M. Shah, S.
Rodriguez-Couto, and J. B. T.-A. I. R. of B. in W. T. P. (WWTPs) Biswas, Eds.
Elsevier, 2022, pp. 369–388. DOI: 10.1016/B978-0-12-823946-9.00002-4.
[19] B. Sharma, A. K. Dangi, and P. Shukla, “Contemporary enzyme based
technologies for bioremediation: A review,” J. Environ. Manage., vol. 210, pp.
10–22, 2018. DOI: 10.1016/j.jenvman.2017.12.075
[20] L. Porto de Souza Vandenberghe, N. Libardi Junior, K. K. Valladares-
Diestra, S. G. Karp, J. Gueiros Wanderley Siqueira, C. Rodrigues, and C. R.
Soccol, “Chapter 16 - Enzymatic bioremediation: current status, challenges,
future prospects, and applications,” S. Rodriguez-Couto and M. P. B. T.-D. in
W. T. R. and P. Shah, Eds. Elsevier, 2022, pp. 355–381. DOI: 10.1016/B978-
0-323-85839-7.00002-5
[21] S. F. Oliveira, J. M. R. da Luz, M. C. M. Kasuya, L. O. Ladeira, and A.
Correa Junior, “Enzymatic extract containing lignin peroxidase immobilized on
carbon nanotubes: Potential biocatalyst in dye decolourization,” Saudi J. Biol.
Sci., vol. 25, no. 4, pp. 651–659, 2018.
[22] L. R. Pinheiro, D. G. Gradíssimo, L. P. Xavier, and A. V Santos,
“Degradation of Azo Dyes: Bacterial Potential for Bioremediation,”
Sustainability, vol. 14, no. 3. 2022.
[23] A. Yurtsever, E. Basaran, D. Ucar, and E. Sahinkaya, “Self-forming
dynamic membrane bioreactor for textile industry wastewater treatment,” Sci.
Total Environ., vol. 751, p. 141572, 2021.
[24] X. Liu, P. Tang, Y. Liu, W. Xie, C. Chen, T. Li, Q. He, J. Bao, A. Tiraferri,
and B. Liu, “Efficient removal of organic compounds from shale gas
wastewater by coupled ozonation and moving-bed-biofilm submerged
membrane bioreactor,” Bioresour. Technol., vol. 344, p. 126191, 2022.
[25] L. Cao, Y. Li, P. Li, X. Zhang, L. Ni, L. Qi, H. Wen, X. Zhang, and Y.
Zhang, “Application of moving bed biofilm reactor - nanofiltration - membrane
bioreactor with loose nanofiltration hollow fiber membranes for synthetic
roxithromycin-containing wastewater treatment: Long-term performance,
membrane fouling and microbial community,” Bioresour. Technol., vol. 360,
p. 127527, 2022. DOI: 10.1016/j.biortech.2022.127527.
[26] M. Wawrzkiewicz, P. Bartczak, and T. Jesionowski, “Enhanced removal
of hazardous dye form aqueous solutions and real textile wastewater using
bifunctional chitin/lignin biosorbent,” Int. J. Biol. Macromol., vol. 99, pp. 754–
764, 2017. DOI:10.1016/j.ijbiomac.2017.03.023.
[27] P. Santhanam, N. Kumar, A. Selvaraju, A. S. Devi, J. Selvakumaran, J.
Thillainayagam, and P. Ananthi, “Preliminary study on the dye removal
efficacy of immobilized marine and freshwater microalgal beads from Textile
wastewater,” AFRICAN J. Biotechnol., vol. 13, pp. 2288–2294, May 2014.
DOI:10.5897/AJB2013.13242.
[28] D. Suteu, C. Zaharia, and T. Măluțan, “Biosorbents based on lignin used
in biosorption processes from wastewater treatment. A review,” in Lignin:
Properties and Applications in Biotechnology and Bioenergy, 2012, pp. 278–
305.