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Abstract — We consider the complexification of a commutative 

ring with unity and specialize this construction to ℤ𝒑[𝒊], with 𝒑 a 

prime of the form 𝟒𝒌 + 𝟏. Since this ring is commutative with 

unity and is not a field, it is feasible to study various classes of 

special elements such as invertibles, zero-divisors, idempotents, 

and nilpotents. The method for this study consists of developing 

computer programs in Python, through which the lists of special 

elements in ℤ𝒑[𝒊] are generated for different values of 𝒑. The 

patterns that characterize these lists are sought, in addition to the 

cardinality of each of these sets. Subsequently, conjectures of 

mathematical type are stated for each of these classes of elements, 

which reflect the observed patterns and properties. Finally, formal 

mathematical proofs of all the conjectures found are made based 

on various concepts and results of the theory of numbers, groups, 

and rings. Thus, we show that Python programming, properly 

used as part of a method, becomes an important tool to identify 

patterns, properties, and characteristics of several abstract 

concepts, typical of algebra.  

 

Index Terms— Idempotent, invertible, nilpotent, Python, zero-

divisor. 

 

  Resumen — En este trabajo presentamos la complejificación de 

un anillo conmutativo con unidad y especializamos esta 

construcción al anillo de los enteros gaussianos ℤ𝒑[𝒊], con 𝒑 un 

primo de la forma 𝟒𝒌 + 𝟏. Como este anillo es conmutativo con 

unidad y no es un cuerpo, resulta viable estudiar diversas clases de 

elementos especiales como invertibles, divisores de cero, 

idempotentes y nilpotentes. La metodología seguida para este 

estudio consiste en desarrollar programas computacionales en 

Python, mediante los cuales se generan las listas de elementos 

especiales en ℤ𝒑[𝒊] para distintos valores de 𝒑; luego con estas 

listas se buscan los patrones que caracterizan a los elementos 

invertibles, idempotentes, divisores de cero y 2-nilpotentes, 

además del cardinal de cada uno de estos conjuntos. 

Posteriormente, para cada una de las clases de elementos 

anteriores se enuncian conjeturas de tipo matemático, las cuales 

reflejan los patrones y propiedades observadas. Finalmente, 

apoyados en diversos conceptos y resultados de la teoría de 

números, grupos y anillos, se hacen las demostraciones 

matemáticas formales de todas las conjeturas halladas. 
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Mostramos así que la programación en Python, usada 

adecuadamente en la metodología, se convierte en una 

herramienta importante para identificar patrones, propiedades y 

características de diversos conceptos abstractos, propios del 

álgebra. 

 

Palabras clave— Divisor de cero, 2-nilpotente, idempotente, 

invertible, Python.   

 

I. INTRODUCTION 

 

OMPLEX numbers, since their appearance in the 16th 

century due to Girolamo Cardano [1], have served as 

inspiration for many studies in mathematics, engineering, 

and physics, including countless applications in control theory, 

electromagnetism, fluid dynamics, signal processing, quantum 

mechanics, cosmology and cartography, among many others 

[2,3]. In some cases, it has been necessary and fundamental to 

consider subsets of the complex numbers, such as the Gaussian 

integers or Eisenstein integers, since they are the appropriate 

environment to study various problems in number theory, such 

as the laws of quadratic and cubic reciprocity [4], or certain 

subfields of the complex numbers, important for studying the 

roots of polynomials, extensions of fields and Galois 

correspondences [5,6]. Currently, the formal construction of the 

field of complex numbers is based on taking the complete set of 

ordered pairs with real entries and considering as operations the 

usual component by component sum and a special product, 

which is the one that characterizes the complex numbers [7]. 

The importance of this construction lies in the fact that any ring 

can be taken as a basis, as shown in [8] and developed in detail 

in [9,10], which means that virtually any commutative ring with 

unity can be complexified. This not only allows the 

construction of new rings, extended via the complex numbers, 

but also provides another way to introduce some special sets of 

the complex numbers, such as the ring of Gaussian integers, the 

field of rational complex numbers, and also finite rings such as 

the Gaussian integers modulo 𝑛, which will be studied in this 

paper.  
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On the other hand, the current importance of programming and 

more broadly of computational thinking lies, among many other 

things, in the fact that it is a fundamental tool for solving 

complicated problems, automating tasks, and facilitating 

multiple aspects of contemporary society, a process that has 

accelerated due to the emergence and development of artificial 

intelligence. According to [11],  

 

the concept of computational thinking was implicit in Papert 

[12], where he spoke of its importance in the framework of his 

educational proposal known as constructionism, through the 

work with the robot “turtle” and the programming language 

LOGO. Papert recognized the importance of an education in 

which technology should be immersed, so he considered it 

important to include robotics and programming from an early 

age, which was not achieved in the following decades. 

However, according to [11], the work that marks a turning point 

in the current conception of computational thinking is that 

developed by Wing [13], where she shows that this concept 

provides new meanings and dimensions for the human being, 

with great potential to be developed in educational 

environments. For [14], computational thinking is a term coined 

by Wing [13], to describe a set of skills, habits, and 

comprehensive approaches to solving problems related to 

programming, which are not only limited to computer use. 

Thus, in a certain way, we can understand that computational 

thinking is a set of processes that allow active interaction 

between a person and a computer, to solve problems of various 

kinds and make use of patterns, algorithms, models, etc. 

 

Given the above, the Ministries of Education and Ministries or 

Institutes of Technology in many countries have been creating 

special initiatives aimed at young people, to foster 

computational skills, including programming. Even in countries 

such as England, Spain, the United States, Costa Rica, Ecuador, 

and Argentina, curricular proposals have been developed to 

enhance computational and technological skills, including 

computational thinking and programming [15]. In the 

Colombian case, the Ministry of Information Technologies and 

Communications has a Digital Government Policy [16], 

through which it is developing the Colombia Program and 

Green Code Strategy initiatives. The purpose of the former is to 

generate resources and opportunities for teachers’ professional 

development to promote computational thinking in official 

educational institutions in Colombia, with a focus on gender 

equity. The second consists of the first learning ecosystem for 

the development of computational thinking skills for children 

and young people in public and private schools in Colombia. 

The ICT Ministry also has the following four proposals for Free 

Digital Training: Talento Tech, Senatic, Avanza Tech, and 

Talento GovTech. 

 

As we have seen, programming, and more broadly 

computational thinking, has become a fundamental tool in 

practically all areas of knowledge. In mathematics, this tool has 

been important not only for research but also for education. 

Currently, several programs for mathematical and statistical use 

are booming, due to their potential, ease of learning, and 

because they are open source, allowing any user to use them 

without any subscription costs for their use. In particular, 

Python programming has provided countless possibilities in 

research and teaching, which is why we highlight in this work 

the use of this language for the study of various algebraic 

concepts.  

 

Our principal goal in this work is to show the importance of 

programming to obtain results in algebra. This paper is 

organized as follows. After the introduction, in Section II, we 

present the construction of the complexification of any 

commutative ring with unity. In Section III, we use Python 

programming to continue the work developed in [9,10]. We 

study the zero-divisors, idempotents, 2-nilpotents, and 

invertible elements of the ring ℤ𝑝[𝑖] with 𝑝 a prime of the form 

4𝑘 + 1. We want to emphasize the importance of programming 

to obtain results in algebra. Thus, the implemented 

methodology consists of developing computer programs in 

Python language. This leads to obtaining the lists of such 

elements for different values of the prime 𝑝. In the next step, 

we find the corresponding patterns that characterize these 

classes of elements, which are presented as conjectures. Finally, 

we proceed to find the formal proofs of the conjectures 

obtained, most of which were originally developed by the 

authors. This same process is done to determine the cardinality 

of each of these classes. 

 

II. THE COMPLEXIFICATION OF ℤ𝑝, WITH 𝑝 PRIME 

 

The classical construction of the complex numbers from the real 

numbers is a topic that is usually addressed in the exercises of 

an algebra textbook or presented in a course on complex 

variables. In addition, the three classical representations of the 

complex numbers, the usual one, the one by matrices, and the 

one by a quotient, are often overlooked by many students of 

both engineering and mathematics. The work done in [9,10] 

recovers these constructions and representations and brings 

them into more general contexts. Following these two works, 

we present below the construction of the complexification of 

any commutative ring with unity. 

 

Let 𝐴 be a commutative ring with unit element 1. On the set 

𝐴 × 𝐴,  we define the sum component by component. The 

product is given by 
(𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐), 

 

for any (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐴 × 𝐴.  

 

Affirmation 1. If 𝐴 is a commutative ring with unit 1, then the 

set 𝐴 × 𝐴 with the operations given above is a commutative ring 

with unit. 

 

Proof. Since the sum of pairs is component by component, it is 

easily observed that (𝐴 × 𝐴, +) is an abelian group. Moreover, 

the product is commutative, since 𝐴 is commutative. Now for 

(𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓) ∈ 𝐴 × 𝐴 it follows that 

 

(𝑎, 𝑏)((𝑐, 𝑑)(𝑒, 𝑓)) = (𝑎, 𝑏)(𝑐𝑒 − 𝑑𝑓, 𝑐𝑓 + 𝑑𝑒) 

 = (𝑎𝑐𝑒 − 𝑎𝑑𝑓 − 𝑏𝑐𝑓 − 𝑏𝑑𝑒, 

  𝑎𝑐𝑓 + 𝑎𝑑𝑒 + 𝑏𝑐𝑒 − 𝑏𝑑𝑓)    (1) 
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and 

 

((𝑎, 𝑏)(𝑐, 𝑑))(𝑒, 𝑓) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐)(𝑒, 𝑓) 

 = (𝑎𝑐𝑒 − 𝑏𝑑𝑒 − 𝑎𝑑𝑓 − 𝑏𝑐𝑓, 

  𝑎𝑐𝑓 − 𝑏𝑑𝑓 + 𝑎𝑑𝑒 + 𝑏𝑐𝑒).   (2) 

 

Since (1) = (2), then (𝑎, 𝑏)((𝑐, 𝑑)(𝑒, 𝑓)) =

((𝑎, 𝑏)(𝑐, 𝑑))(𝑒, 𝑓). That is, the product in 𝐴 × 𝐴 is associative. 

 

Moreover, for (𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓) ∈ 𝐴 × 𝐴 it follows that  

 

(𝑎, 𝑏)((𝑐, 𝑑) + (𝑒, 𝑓)) = (𝑎, 𝑏)(𝑐 + 𝑒. 𝑑 + 𝑓) 

 = (𝑎𝑐 + 𝑎𝑒 − 𝑏𝑑 − 𝑏𝑓, 
  𝑎𝑑 + 𝑎𝑓 + 𝑏𝑐 + 𝑏𝑒). 

 = (𝑎, 𝑏)(𝑐, 𝑑) + (𝑎, 𝑏)(𝑒, 𝑓). 

 

That is, the product distributes with respect to the sum on the 

left. The other distributive property is a consequence of the 

previous distributivity and commutativity. Finally, it is easy to 

see that the pair (1,0) is the identity element for the product. 

Therefore, the set 𝐴 × 𝐴 with the indicated operations is a 

commutative ring with unity.                                                 ■ 

 

The ring (𝐴 × 𝐴, +,∙), described above will be denoted by    

𝐴 ⊠ 𝐴. In addition, seeking to make this work complete for the 

reader, we present below some particularities of this ring. 

 

Affirmation 2. Let 𝐴 be a commutative ring with unit element 

1. Then: 

 

1. The function 𝜑 ∶ 𝐴 → 𝐴 ⊠ 𝐴 defined by 𝜑(𝑎) = (𝑎, 0) for 

all 𝑎 ∈ 𝐴 is an injective homomorphism of rings. 

 

2. The element 𝑖 = (0,1) ∈ 𝐴 ⊠ 𝐴 commutes with (𝑚, 0), for 

each 𝑚 ∈ 𝐴.  

 

According to Affirmation 2, the First Isomorphism Theorem 

allows us to conclude that the ring 𝐴 ⊠ 𝐴 contains a subring 

isomorphic to the ring 𝐴 or we can also say that any element 

𝑎 ∈ 𝐴 is biunivocally identified with the pair (𝑎, 0) ∈ 𝐴 ⊠ 𝐴. 

Then, for each  (𝑎, 𝑏) ∈ 𝐴 ⊠ 𝐴 we have (𝑎, 𝑏) = (𝑎, 0) +
(𝑏, 0)(0,1). Moreover, note that the element 𝑖 = (0,1) satisfies 

𝑖2 = (−1,0) and 𝑖 commutes with each element (𝑚, 0). 

Therefore, using the aforementioned identification we can 

conclude that (𝑎, 𝑏) = 𝑎 + 𝑏𝑖 where𝑎, 𝑏 ∈ 𝐴, 𝑖 = (0,1) is such 

that 𝑖2 = −1 and 𝑖 commutes with each element(𝑚, 0).  

 

Thus, 𝐴 ⊠ 𝐴 can be seen as the “Complexification of the ring  

𝑨’’ [8]. That is, 𝐴 ⊠ 𝐴 coincides with the ring, 

 

A[𝑖] = {𝑎 + 𝑏𝑖: 𝑎, 𝑏 ∈ 𝐴, 𝑖2 = −1, 𝑖𝑚 = 𝑚𝑖, ∀𝑚 ∈ 𝐴}. 

 

As particular cases, it is clear that when 𝐴 = ℝ, the field of 

complexes ℂ is obtained; if 𝐴 = ℤ, one obtains the ring of 

Gaussian integers ℤ[𝑖] = {𝑎 + 𝑏𝑖: 𝑎, 𝑏 ∈ ℤ}  [5,6]; and if 𝐴 =
ℤ𝑛, one obtains the Gaussian integers modulo 𝑛, ℤ𝑛[𝑖] =
{𝑎 + 𝑏𝑖: 𝑎, 𝑏 ∈ ℤ𝑛}, which can also be constructed as the 

quotient of the ring ℤ[𝑖] by the ideal 〈𝑛〉 in ℤ[𝑖] generated by n 

[17,18].   

 

Since by considering as a base ring the field of reals ℝ, the field 

of complex numbers ℂ is obtained, one can generalize this 

construction by considering finite fields. This is the case in 

[9,10], where they consider as a base ring the field ℤ𝑝, with 𝑝 a 

prime, construct the ring ℤ𝑝[𝑖] and show that it is a field if, and 

only if, 𝑝 is not a sum of two squares or equivalently 𝑝 is of the 

form 4𝑘 + 3. Furthermore, they prove that in this case three 

isomorphic representations of ℤ𝑝[𝑖], analogous to those 

obtained from the reals, are obtained. They are obtained using 

the matrix ring 𝑀(ℤ𝑝) = {(
𝑎 𝑏

−𝑏 𝑎
) : 𝑎, 𝑏 ∈ ℤ𝑝}, the quotient 

ring ℤ𝑝[𝑥]/〈𝑥2 + 1̅〉 and the one we have developed in this 

section ℤ𝑝 ⊠ ℤ𝑝 (see Figure 1). Thus, we will denote the ring 

of Gaussian integers over ℤ𝑝 as ℤ𝑝[𝑖] or ℤ𝑝 ⊠ ℤ𝑝. 

 

 
              Fig. 1. Isomorphic representations of ℤ𝑝[𝑖] for 𝑝 prime of the  

              form 4𝑘 + 3. 

 

III. SOME ALGEBRAIC CONCEPTS IN ℤ𝑝[𝑖], WITH 𝑝 A PRIME 

OF THE FORM 4𝑘 + 1 

 

According to the previous section, if 𝑝 is a prime of the form 

4𝑘 + 1, or equivalently 𝑝 is an odd prime which is the sum of 

two squares, then ℤ𝑝[𝑖] is a commutative ring with unity, which 

is not a field. This means that in these rings it is feasible to find 

various elements important for ring theory such as invertibles, 

zero-divisors, idempotents, and nilpotents, among many others 

[5, 8, 19]. 

 

Although several of these classes of elements have been 

characterized in various works [17, 18], the way this has been 

done is by directly using previous results or theoretical aspects 

of algebra and number theory to finally, on some occasions, 

verify these results using programming languages. In this work, 

we want to emphasize the importance of programming to obtain 

results in algebra. By continuing the work developed in [9,10], 

we will use Python to study the zero-divisors, idempotents, 2-

nilpotents, and invertible elements of the ring ℤ𝑝[𝑖] with 𝑝 a 

prime of the form 4𝑘 + 1. Thus, the process we will follow in 

this work consists of developing programs in Python and 

generating the previously described lists of elements of the ring  

ℤ𝑝[𝑖], for all primes 𝑝 of the form 4𝑘 + 1 less than 100. Then, 
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we proceed to identify the patterns or characteristics of each 

class of these elements, state the conjectures obtained in 

mathematical terms, and make the corresponding formal proofs. 

This process is also done to determine the cardinality of each of 

the sets defined by the different classes of elements. All the 

results presented here are part of a more general study presented 

in [20]. 

  

Figure 2 shows the program that allows one to perform and 

visualize the product of elements in ℤ𝑝[𝑖]. 

 

 
Fig. 2. Python program for the product in ℤ𝑝[𝑖]. 

 

Definition 1. A nonzero element (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 is a zero-

divisor if there exists a nonzero element (𝑐̅, 𝑑̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 such 

that (𝑎̅, 𝑏̅)(𝑐̅, 𝑑̅) = (0̅, 0̅). 

 

The Python program in Figure 3 was designed to display the 

zero-divisors for each prime and indicate the number of zero-

divisors in each case. 

 

 
Fig. 3. Python program for the zero-divisors in ℤ𝑝[𝑖]. 

 

The values obtained for 𝑝 = 5, 13, and 17 are shown in Table 

I. In each pair found by the program, a very interesting 

particularity is observed. For example, for 𝑝 = 5 if we take the 

pair of zero-divisors (1̅, 2̅) and (1̅, 3̅), then one has that 

12 + 22̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅ and 12 + 32̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. If for 𝑝 = 13 one takes the pair 

(8̅, 12̅̅̅̅ ) and (1̅, 5̅), one has that 82 + 122̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0̅ and 12 + 52̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. 

This pattern is observed for all other pairs of zero-divisors, for 

all odd primes, sum of two squares less than 100. We can then 

conjecture that a nonzero element   (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 is a zero-

divisor if, and only if, 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. Before proving this 

conjecture, we must prove a preliminary result. 

 

Affirmation 3. Let 𝑝 be an odd prime which is a sum of two 

squares. If (𝑎̅, 𝑏̅) is a zero-divisor in ℤ𝑝 ⊠ ℤ𝑝, then 𝑎̅ ≠ 0̅ and 

𝑏̅ ≠ 0̅. 

 

Proof. By assumption, there exists (𝑐̅, 𝑑̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 nonzero 

such that (𝑎̅, 𝑏̅)(𝑐̅, 𝑑̅) = (𝑎𝑐 − 𝑏𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑎𝑑 + 𝑏𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = (0̅, 0̅). If 𝑎̅ =

0̅, then −𝑏𝑑̅̅ ̅̅ ̅̅ = 0̅ and  𝑏𝑐̅̅ ̅ = 0̅. Since ℤ𝑝 is an integral domain, 

one has that 𝑐̅ = 0̅ and 𝑑̅ = 0̅, which is a contradiction. The 

same is true if 𝑏̅ = 0̅, so we conclude that 𝑎̅ ≠ 0̅ and 𝑏̅ ≠ 0̅.                  

                                             ∎ 

 
TABLE I 

ZERO-DIVISORS IN ℤ5[𝑖], ℤ13[𝑖], AND ℤ17[𝑖] 
  

p = 5 p = 13 p = 17 

32; distintos 8 288; distintos 24 512; distintos 32 

[1, 2] * [1, 3] [1, 5] * [1, 8] [1, 4] * [1, 13] 

[1, 2] * [2, 1] [1, 5] * [2, 3] [1, 4] * [2, 9] 

[1, 2] * [3, 4] [1, 5] * [3, 11] [1, 4] * [3, 5] 

[1, 2] * [4, 2] [1, 5] * [4, 6] [1, 4] * [4, 1] 

[1, 3] * [1, 2] [1, 5] * [5, 1] [1, 4] * [5, 14] 

[1, 3] * [2, 4] [1, 5] * [6, 9] [1, 4] * [6, 10] 

[1, 3] * [3, 1] [1, 5] * [7, 4] [1, 4] * [7, 6] 

[1, 3] * [4, 3] [1, 5] * [8, 12] [1, 4] * [8, 2] 

[2, 1] * [1, 2] [1, 5] * [9, 7] [1, 4] * [9, 15] 

[2, 1] * [2, 4] [1, 5] * [10, 2] [1, 4] * [10, 11] 

[2, 1] * [3, 1] [1, 5] * [11, 10] [1, 4] * [11, 7] 

[2, 1] * [4, 3] [1, 5] * [12, 5] [1, 4] [12, 3] 

[2, 4] * [1, 3] [1, 8] * [1, 5] [1, 4] * [13, 16] 

[2, 4] * [2, 1] [1, 8] * [2, 10] [1, 4] * [14, 12] 

[2, 4] * [3, 4] [1, 8] * [3, 2] [1, 4] * [15, 8] 

[2, 4] * [4, 2] [1, 8] * [4, 7] [1, 4] * [16, 4] 

[3, 1] * [1, 3] [1, 8] * [5, 12] [1, 13] * [1, 4] 

[3, 1] * [2, 1] [1, 8] * [6, 4] [1, 13] * [2, 8] 

[3, 1] * [3, 4] [1, 8] * [7, 9] [1, 13] * [3, 12] 

 

Definition 2. Let 𝑝 be a prime and 𝑎 an integer relatively prime 

to 𝑝, a relation which is denoted by (𝑎, 𝑝) = 1. We say that 𝑎 

is a quadratic residue or a square modulo 𝒑, if there exists 

𝑏 ∈ ℤ such that 𝑏2 ≡ 𝑎 (𝑚𝑜𝑑 𝑝). 

 

Note that if 𝑎 is a quadratic residue modulo 𝑝, then there exists 

𝑥̅ ∈ ℤ𝑝 such that 𝑥̅2 = 𝑎̅ . We can then say that 𝑥̅ is a square 

root of 𝑎̅ modulo 𝑝 and −𝑥̅̅ ̅̅  is also. Then, in this case, we can 

write 𝑥̅ = ±√𝑎̅. 
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For the study of quadratic residues, the Legendre symbol 

becomes fundamental. It is defined below. 

 

Definition 3. Let 𝑝 be an odd prime and 𝑎 ∈ ℤ such that 

(𝑎, 𝑝) = 1. Legendre’s symbol is defined as: 

 

(
𝑎

𝑝
) = {

1,              if 𝑎 is a quadratic residue  
−1,            if 𝑎 is not a quadratic residue

 

 

The following proposition presents some properties of the 

Legendre symbol. The proofs can be found in many classical 

texts on number theory [21,22]. 

 

Proposition 1. Let 𝑝 be an odd prime and 𝑎, 𝑏 ∈ ℤ such that 

(𝑎, 𝑝) = (𝑏, 𝑝) = 1. Then: 

 

1. (
𝑎

𝑝
) ≡ 𝑎

𝑝−1

2  (𝑚𝑜𝑑 𝑝). 

2. (
𝑎2

𝑝
) = 1. 

3. (
𝑎𝑏

𝑝
) = (

𝑎

𝑝
) (

𝑏

𝑝
). 

 

4. If 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑝),  then (
𝑎

𝑝
) = (

𝑏

𝑝
). 

5. 𝑝 ≡ 1 (𝑚𝑜𝑑 4) if, and only if, −1 is a quadratic residue 

modulo 𝑝. 

6. 𝑝 ≡ 3 (𝑚𝑜𝑑 4) if, and only if, −1 is not a quadratic residue 

modulo 𝑝. 

 

Affirmation 4. Let 𝑝 be an odd prime sum of two squares and 

(0̅, 0̅) ≠ (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝. Then (𝑎̅, 𝑏̅) is a zero-divisor if, and 

only if, 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. 

 

Proof. If (𝑎̅, 𝑏̅) is a zero-divisor, then there exists (𝑐̅, 𝑑̅) ∈

ℤ𝑝 ⊠ ℤ𝑝 nonzero such that (𝑎̅, 𝑏̅)(𝑐̅, 𝑑̅) = (0̅, 0̅). Note then 

that (𝑐̅, 𝑑̅) is also a zero-divisor and by Affirmation 3, it follows 

that 𝑐̅ ≠ 0̅ and 𝑑̅ ≠ 0̅. From this equality there follows 

(𝑎𝑐 − 𝑏𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑎𝑑 + 𝑏𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = (0̅, 0̅) and thus we obtain 

 

𝑎𝑐 − 𝑏𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 0̅                                 (1)                   

       

𝑎𝑑 + 𝑏𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 0̅                                 (2)  

 

Multiplying equation (1) by 𝑎̅, equation (2) by 𝑏̅ and summing 

yields (𝑎2 + 𝑏2)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. Since 𝑐̅ ≠ 0̅, we conclude that 

𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. 

 

Conversely, since (0̅, 0̅) ≠ (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 and 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

0̅, then (0̅, 0̅) ≠ (𝑏̅, 𝑎̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 and (𝑎̅, 𝑏̅)(𝑏̅, 𝑎̅) = (𝑎̅𝑏̅ −

𝑏̅𝑎̅, 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = (0̅, 0̅). That is, (𝑎̅, 𝑏̅) is a zero-divisor.          ∎ 

 

Having characterized the zero-divisors, we also ask how many 

of them are there, in terms of the prime 𝑝. If we denote the 

cardinality of this set as |𝐷𝑖𝑣(ℤ𝑝[𝑖])|, then, according to the 

lists provided by the program (see Table I), it can be seen that 

for 𝑝 = 5 we have |𝐷𝑖𝑣(ℤ5[𝑖])| = 8 = 2(5) − 2; for 𝑝 = 13 it 

follows that |𝐷𝑖𝑣(ℤ13[𝑖])| = 24 = 2(13) − 2; and for 𝑝 = 17, 

that |𝐷𝑖𝑣(ℤ17[𝑖])| = 32 = 2(17) − 2.  This same pattern holds 

for all odd primes that are a sum of two squares, less than 100. 

This allows us to conjecture that |𝐷𝑖𝑣(ℤ𝑝[𝑖])| = 2(𝑝 − 1), 

which is formally proven below.  

 

Affirmation 5. If 𝑝 is an odd prime which is a sum of two 

squares, then |𝐷𝑖𝑣(ℤ𝑝[𝑖])| = 2(𝑝 − 1). 

 

Proof. Let (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 be a zero-divisor. Then 𝑎̅ and 𝑏̅ 

are nonzero and 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. This implies that 𝑏2̅̅ ̅ = −𝑎2̅̅ ̅̅ ̅̅  and 

by Proposition 1, we have that for all 𝑎̅ ∈ {1̅, 2̅, … , 𝑝 − 1̅̅ ̅̅ ̅̅ ̅}:  

 

(
−𝑎2

𝑝
) = (

−1

𝑝
) (

𝑎2

𝑝
)                                      

       

 = (
−1

𝑝
) . 1                                   

   

 = 1. 

 

Which signifies that −𝑎2 is a quadratic residue modulo 𝑝. 

Equivalently, −𝑎2̅̅ ̅̅ ̅̅  has two square roots in ℤ𝑝 and they are 𝑏̅ 

and −𝑏̅̅ ̅̅ .  Moreover, 𝑏̅ and −𝑏̅̅ ̅̅  are different because otherwise 

you would have 2𝑏̅̅ ̅ = 0̅, which leads to 𝑏̅ = 0̅, which is a 

contradiction. 

 

In conclusion, if (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 is a zero-divisor, the 

possibilities for 𝑎̅ are 𝑝 − 1 and for 𝑏̅ are 2. That is, there exist 

2(𝑝 − 1) zero-divisors.                                                        ∎ 

  

Definition 4. An element (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 is called nilpotent 

if there exists 𝑛 ∈ ℕ such that  (𝑎̅, 𝑏̅)
𝑛

= (0̅, 0̅). We will say 

that (𝑎̅, 𝑏̅) is 2 −nilpotent if (𝑎̅, 𝑏̅)
2

= (0̅, 0̅).  

 

The Python program in Figure 4 is designed to find the 2-

nilpotent elements for each prime 𝑝 and at the same time 

indicate the number of 2-nilpotents in each case. 

 

 
Fig. 4. Python program for the 2-nilpotent elements in ℤ𝑝[𝑖].  

 

The values obtained for 𝑝 = 5, 13, 17, 29, and 37 are given in 

Table II. Note that in all cases, there is only one 2-nilpotent 
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element, the trivial (0̅, 0̅). This is also observed for the other 

odd primes that are sums of two squares and are less than 100. 

So, we can conjecture that only the null element of ℤ𝑝[𝑖] is 

2 −nilpotent, which is proved below. 

 
TABLE II 

2-NILPOTENT ELEMENTS IN ℤ𝑝[𝑖], FOR 𝑝 = 5, 13, 17, 29, AND 37 
      

Primo Lista Nilpotentes Total Lista 

p = 5 [0, 0] * [0, 0] = [0, 0] 1 

p = 13 [0, 0] * [0, 0] = [0, 0] 1 

p = 17 [0, 0] * [0, 0] = [0, 0] 1 

p = 29 [0, 0] * [0, 0] = [0, 0] 1 

p = 37 [0, 0] * [0, 0] = [0, 0] 1 

 

Affirmation 6. Let 𝑝 be an odd prime which is a sum of two 

squares. Then, the only 2 −nilpotent element of ℤ𝑝 ⊠ ℤ𝑝 is 

(0̅, 0̅). 

 

Proof. If (𝑎̅, 𝑏̅) is 2 −nilpotent, then (𝑎̅, 𝑏̅)(𝑎̅, 𝑏̅) = (0̅, 0̅). 

That is, (𝑎2 − 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑎𝑏 + 𝑏𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = (0̅, 0̅) and we obtain the system 

 

𝑎2 − 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 0̅                                 (3)                   

       

2𝑎𝑏̅̅ ̅̅ ̅ = 0̅                                 (4)  

 

Equation (4) implies that 𝑎̅ = 0̅ or 𝑏̅ = 0̅. Replacing either of 

the two options in equation (3) yields  𝑏̅ = 0̅ or 𝑎̅ = 0̅, 

respectively. In conclusion, 𝑎̅ = 0̅ and 𝑏̅ = 0̅.                        ∎ 

 

Definition 5. An element (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 is called 

idempotent if (𝑎̅, 𝑏̅)
2

= (𝑎̅, 𝑏̅). 

 

It is clear that  (0̅, 0̅) and  (1̅, 0̅) are idempotents of ℤ𝑝 ⊠ ℤ𝑝, 

which are called trivial idempotents. 

 

The Python program in Figure 5 was designed to show the 

idempotent elements for each prime 𝑝 and at the same time 

indicate the number of these elements. 

 

 

Fig. 5. Python program for the idempotent elements in ℤ𝑝[𝑖].  

 

The results given by the above program for 𝑝 =
5, 13, 17, 29, 37, and 41 are shown in Table III. It can be 

observed that the nontrivial idempotents for 𝑝 = 5 are (3̅, 1̅) 

and (3̅, 4̅). In both cases the first component is 3̅, 3̅ = (
5+1

2
)

̅̅ ̅̅ ̅̅ ̅
 

and furthermore 32 + 12̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅ and 32 + 42̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. For 𝑝 = 13 

they are (7̅, 4̅) and (7̅, 9̅). In both cases the first component is 

7̅, 7̅ = (
13+1

2
)

̅̅ ̅̅ ̅̅ ̅̅
 and moreover 72 + 42̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅  and  72 + 92̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. 

This same pattern is observed in the other primes in the table 

and in all other odd primes less than 100 that are the sum of two 

squares. Thus, we conjecture that (𝑎̅, 𝑏̅) is a nontrivial 

idempotent if, and only if,  𝑎̅ = (
𝑝+1

2
)

̅̅ ̅̅ ̅̅ ̅
 and 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. This is 

proved below. 

 
TABLE III 

IDEMPOTENT ELEMENTS IN ℤ𝑝[𝑖], FOR 𝑝 = 5, 13, 17, 29, 37, AND 41 

      

Primo Lista Idempotentes Total Lista 

p = 5 

[0, 0] * [0, 0] = [0, 0] 

4 
[1, 0] * [1, 0] = [1, 0] 

[3, 1] * [3, 1] = [3, 1] 

[3, 4] * [3, 4] = [3, 4] 
   

p = 13 

[0, 0] * [0, 0] = [0, 0] 

4 
[1, 0] * [1, 0] = [1, 0] 

[7, 4] * [7, 4] = [7, 4] 

[7, 9] * [7, 9] = [7, 9] 
   

p = 17 

[0, 0] * [0, 0] = [0, 0] 

4 
[1, 0] * [1, 0] = [1, 0] 

[9, 2] * [9, 2] = [9, 2] 

[9, 15] * [9, 15] = [9, 15] 
   

p = 29 

[0, 0] * [0, 0] = [0, 0] 

4 
[1, 0] * [1, 0] = [1, 0] 

[15, 6] * [15, 6] = [15, 6] 

[15, 23] * [15, 23] = [15, 23] 
   

p = 37 

[0, 0] * [0, 0] = [0, 0] 

4 
[1, 0] * [1, 0] = [1, 0] 

[19, 3] * [19, 3] = [19, 3] 

[19, 34] * [19, 34] = [19, 34] 
   

p = 41 

[0, 0] * [0, 0] = [0, 0] 

4 
[1, 0] * [1, 0] = [1, 0] 

[21, 16] * [21, 16] = [21, 16] 

[21, 25] * [21, 25] = [21, 25] 

 

Recall that if 𝑒 is a nontrivial idempotent in a ring with unity 1, 

then 𝑒 is a zero-divisor since one has 𝑒(𝑒 − 1) = 0.  

 

Affirmation 7. Let 𝑝 be an odd prime which is the sum of two 

squares and (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝. Then (𝑎̅, 𝑏̅) is a nontrivial 

idempotent if, and only if, 𝑎̅ = (
𝑝+1

2
)

̅̅ ̅̅ ̅̅ ̅
 and 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. 

 

Proof. If (𝑎̅, 𝑏̅) is a nontrivial idempotent, then (𝑎̅, 𝑏̅) is a zero-

divisor and by Affirmation 3, 𝑎̅ ≠ 0̅ and 𝑏̅ ≠ 0̅. The following 

system of equations results: 
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𝑎2 − 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑎̅                                 (5)                   

       

2𝑎𝑏̅̅ ̅̅ ̅ = 𝑏̅                                 (6)  

 

From Equation (6), one has 2̅𝑎̅ = 1̅ = 𝑝 + 1̅̅ ̅̅ ̅̅ ̅ ⟹ 𝑎̅ = (
𝑝+1

2
)

̅̅ ̅̅ ̅̅ ̅
. 

Substituting in Equation (5) we obtain 

 

𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 2𝑎2 − 𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                 

       

 = 2 (
(𝑝+1)2

4
) − (

𝑝+1

2
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
                                   

   

 = (
𝑝+1

2
) − (

𝑝+1

2
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                   

   

 = 0̅. 

 

On the other hand, let (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 with 𝑎̅ = (
𝑝+1

2
)

̅̅ ̅̅ ̅̅ ̅
 and 

𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. Then, 𝑏2̅̅ ̅ = −𝑎2̅̅ ̅̅ ̅̅  and moreover,  

 

(𝑎̅, 𝑏̅)
2
 = (𝑎2 − 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 2𝑎𝑏̅̅ ̅̅ ̅)                                                

       

 = (2𝑎2̅̅ ̅̅ ̅, 𝑏̅)                                 

   

 = (2 (
(𝑝+1)2

4
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, 𝑏̅)                                                

   

 = ((
𝑝+1

2
)

̅̅ ̅̅ ̅̅ ̅
, 𝑏̅)                                                

   

 = (𝑎̅, 𝑏̅). 

 

That is, (𝑎̅, 𝑏̅) is idempotent.                                           ∎  

  

For the number of nontrivial idempotent elements, it suffices to 

look at Table III. The results indicate that independently of the 

prime 𝑝, exactly two nontrivial idempotents are always found. 

That is, if we denote the cardinality of this set by |𝐼𝑑(ℤ𝑝[𝑖])|, 

then |𝐼𝑑(ℤ𝑝[𝑖])| = 2. This will be proved below. 

 

Affirmation 8. If 𝑝 is an odd prime which is a sum of two 

squares, then |𝐼𝑑(ℤ𝑝[𝑖])| = 2. 

  

Proof. Let (𝑎̅, 𝑏̅) ∈ ℤ𝑝 ⊠ ℤ𝑝 be a nontrivial idempotent. Then 

𝑎̅ = (
𝑝+1

2
)

̅̅ ̅̅ ̅̅ ̅
 and 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅. Thus, 𝑎̅ has a fixed value that 

depends on 𝑝 and 𝑏̅2 = −𝑎2̅̅ ̅̅ ̅̅ . By Proposition 1 and the proof of 

Affirmation 7, −𝑎2̅̅ ̅̅ ̅̅  has two different square roots in ℤ𝑝. That 

is, 𝑏̅ takes two different values, which implies that 

|𝐼𝑑(ℤ𝑝[𝑖])| = 2.                        ∎ 

 

To finish this work, it remains to study the invertible elements 

of ℤ𝑝[𝑖]. 

 

Definition 6. An element 𝑎̅ + 𝑏̅𝑖 ∈ ℤ𝑝[𝑖] is invertible if there is 

a 𝑐̅ + 𝑑̅𝑖 ∈ ℤ𝑝[𝑖] with (𝑎̅ + 𝑏̅𝑖)(𝑐̅ + 𝑑̅𝑖) = 1. 

 

The Python program in Figure 6 was designed to display the 

invertible elements for each prime 𝑝 and at the same time 

indicate the number of these elements. 

 

 
Fig. 6. Python program for the invertible elements in ℤ𝑝[𝑖].  

 

The results obtained by the above program for 𝑝 = 5 and 𝑝 =
13 are observed in Tables IV and V. We can observe that the 

only invertible pairs (𝑎̅, 𝑏̅) are those with 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ 0̅. The 

same result is observed for all odd primes less than 100 that are 

the sum of two squares. The proof of this is analogous to that 

presented in [9, 10], we include it for completeness of this paper 

and as a benefit to the reader. 

 
TABLE IV 

INVERTIBLE ELEMENTS IN ℤ5[𝑖] 
      

p = 5 

Total inversos = 16 

[0, 1] * [0, 4] = [1, 0]  [2, 2] * [4, 1] = [1, 0] 

[0, 2] * [0, 2] = [1, 0]  [2, 3] * [4, 4] = [1, 0] 

[0, 3] * [0, 3] = [1, 0]  [3, 0] * [2, 0] = [1, 0] 

[0, 4] * [0, 1] = [1, 0]  [3, 2] * [1, 1] = [1, 0] 

[1, 0] * [1, 0] = [1, 0]  [3, 3] * [1, 4] = [1, 0] 

[1, 1] * [3, 2] = [1, 0]  [4, 0] * [4, 0] = [1, 0] 

[1, 4] * [3, 3] = [1, 0]  [4, 1] * [2, 2] = [1, 0] 

[2, 0] * [3, 0] = [1, 0]   [4, 4] * [2, 3] = [1, 0] 

 

Affirmation 9. Let 𝑝 be an odd prime which is the sum of two 

squares and 𝑎̅ + 𝑏̅𝑖 ∈ ℤ𝑝[𝑖]. Then, 𝑎̅ + 𝑏̅𝑖 is invertible if, and 

only if, 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ 0̅. 

  

Proof. If 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅, by Affirmation 4 we have that 𝑎̅ + 𝑏̅𝑖 is 

a zero-divisor and thus it is not invertible. 
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On the other hand, if 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ 0̅, then it is easy to see that the 

multiplicative inverse of 𝑎̅ + 𝑏̅𝑖 is (𝑎̅ + 𝑏̅𝑖)
−1

=

(𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
−1

(𝑎̅ − 𝑏̅𝑖) ∈ ℤ𝑝[𝑖].                                                 ∎ 

 

 

 
TABLE V 

INVERTIBLE ELEMENTS IN ℤ13[𝑖] 
      

p = 13 

Total inversos = 144 

[0, 1] * [0, 12] = [1, 0] [1, 7] * [6, 10] = [1, 0] 

[0, 2] * [0, 6] = [1, 0] [1, 9] * [10, 1] = [1, 0] 

[0, 3] * [0, 4] = [1, 0] [1, 10] * [4, 12] = [1, 0] 

[0, 4] * [0, 3] = [1, 0] [1, 11] * [8, 3] = [1, 0] 

[0, 5] * [0, 5] = [1, 0] [1, 12] * [7, 7] = [1, 0] 

[0, 6] * [0, 2] = [1, 0] [2, 0] * [7, 0] = [1, 0] 

[0, 7] * [0, 11] = [1, 0] [2, 1] * [3, 5] = [1, 0] 

[0, 8] * [0, 8] = [1, 0] [2, 2] * [10, 3] = [1, 0] 

[0, 9] * [0, 10] = [1, 0] [2, 4] * [4, 5] = [1, 0] 

[0, 10] * [0, 9] = [1, 0] [2, 5] * [5, 7] = [1, 0] 

[0, 11] * [0, 7] = [1, 0] …............. 

[0, 12] * [0, 1] = [1, 0] [12, 6] * [7, 3] = [1, 0] 

[1, 0] * [1, 0] = [1, 0] [12, 7] * [7, 10] = [1, 0] 

[1, 1] * [7, 6] = [1, 0] [12, 9] * [3, 1] = [1, 0] 

[1, 2] * [8, 10] = [1, 0] [12, 10] * [9, 12] = [1, 0] 

[1, 3] * [4, 1] = [1, 0] [12, 11] * [5, 3] = [1, 0] 

[1, 4] * [10, 12] = [1, 0] [12, 12] * [6, 7] = [1, 0] 

 

As for the number of invertible elements, the program shows in 

Tables IV and V, that for 𝑝 = 5 there are 16 invertibles and for 

𝑝 = 13 there are 144 invertibles. We note then that 16 =
(5 − 1)2 and 144 = (13 − 1)2. Moreover, the same can be 

observed for the other odd primes less than 100 that are the sum 

of two squares. Thus, if we denote the cardinality of this set by 

|𝐼𝑛𝑣(ℤ𝑝[𝑖])|, then |𝐼𝑛𝑣(ℤ𝑝[𝑖])| = (𝑝 − 1)2. This is proved 

below. 

 

Affirmation 10. If 𝑝 is an odd prime which is the sum of two 

squares, then |𝐼𝑛𝑣(ℤ𝑝[𝑖])| = (𝑝 − 1)2. 

  

Proof. According to Affirmations 4 and 9, it can be concluded 

that every nonzero element 𝑎̅ + 𝑏̅𝑖 ∈ ℤ𝑝[𝑖], is a zero-divisor or 

invertible: this depends on whether 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0̅ or 𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠
0̅, respectively.  That is, the set ℤ𝑝[𝑖] is partitioned into three 

classes, the zero-divisors, the invertibles, and the zero element. 

By Affirmation 5, 𝑝2 = |𝐼𝑛𝑣(ℤ𝑝[𝑖])| + 2(𝑝 − 1) + 1, which 

implies that |𝐼𝑛𝑣(ℤ𝑝[𝑖])| = 𝑝2 − 2(𝑝 − 1) − 1 = (𝑝 − 1)2, 

which is what we wanted to prove.                                           ∎   

                                                             

IV. CONCLUSIONS 

 

We present below the most relevant aspects that emerged 

during the development of this work and at the same time we 

would like to make some recommendations to continue with 

this study, providing new elements for discussion and research. 

 

- The process employed in this work allows using 

computational programming to conjecture results in algebra. 

This shows that programming is not only useful in engineering 

or applied sciences but also allows interesting computational 

studies in algebra, an abstract area. Consequently, many of the 

known processes in mathematical problem-solving using 

programming were evidenced, such as: problem understanding, 

exploration, case study, program design and implementation, 

desktop testing, and evaluation. 

 

- We emphasize the pedagogical importance of the process 

followed in this work to obtain the results. This allows, through 

computer programming, to obtain results, which in turn lead to 

a differentiated mental development in terms of the observation 

of patterns, formulation of hypotheses, and finally the formal 

proofs of the assertions. In the same way, other mental 

processes are developed in the student as a consequence of the 

deep understanding of the set being studied together with its 

structure, the programming of the different algebraic concepts, 

analysis of the results, observation of patterns, formulation of 

hypotheses, and their theoretical proof. 

 

- The computer programs developed in this work can be 

modified to study other important elements in a ring such as 

nilpotent in general, regular, associated, and irreducible, among 

many others [5, 8, 19]. In this case, one could also consider 

various rings of integers modulo 𝑛 or some subclasses as 

ℤ𝑝, ℤ𝑝𝛼 , ℤ𝑝𝑞 with 𝑝, 𝑞 primes and the corresponding 

complexification of each of them. Even other sets of integers 

modulo 𝑛 such as Eisenstein, Hurwitz and Lipschitz integers 

could be considered [23, 24].   

 

- As a continuation of this work and also relying on 

computational programming, additional studies on the group of 

invertible elements, its generators, and the cardinality of this set 

can be considered. As for the zero-divisors we can observe that 

the simulations found can be used to determine which and how 

many are the pairs (𝑐̅, 𝑑̅) such that (𝑎̅, 𝑏̅)(𝑐̅, 𝑑̅) = (0̅, 0̅), where 

(𝑎̅, 𝑏̅) is a fixed zero-divisor. That is, in the language of graphs 

we would be thinking about determining which and how many 

vertices are connected to the given vertex  (𝑎̅, 𝑏̅). This would 

lead to the study of the zero-divisor graph of the ring ℤ𝑝[𝑖] with 

𝑝 an odd prime of the form 4𝑘 + 1 or more generally of the 

rings ℤ𝑛[𝑖] and ℤ𝑛 [8]. Finally, as for idempotents, this paper 

shows that in the case of the rings ℤ𝑝[𝑖] with 𝑝 an odd prime of 

the form 4𝑘 + 1, only two nontrivial idempotents result, which 

does not allow us to go deeper into this ring. However, when 

considering more general rings such as ℤ𝑛, ℤ𝑛[𝑖] and even 

quaternions modulo 𝑛, a nontrivial number of idempotents arise 

[20]. This makes viable a deeper study of them in terms of 

characterization, cardinality, classes of these, associated 

ordered set, and all notions arising from this order [19]. 
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