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Abstract— This study developed a fuzzy logic-based climate
classification index for Colombia, integrating hydroclimatic, air
quality, and topographic variables through a three-phase
methodology. In Phase 1 (2010-2022), multisource data acquisition
processed precipitation (600-8000 mm/year), temperature (14-
32°C), humidity (28-95%), PM:.s (6-35 pg/m?), and NO: (10-60
ppb) using IDEAM's DHIME portal and NASA Giovanni
products, with quality-controlled interpolation. Phase 2
implemented a Mamdani-type fuzzy inference system in FisPro,
creating 127 "If-Then" rules through nonlinear correlation
analysis (Spearman >0.65) and expert knowledge, using MIN-
MAX operators and adaptive weights (0.3 rural/0.5 urban
pollution coefficients). Phase 3 geospatial implementation
achieved  92.3%  cross-validation accuracy (MAE=1.2,
RMSE=1.8), generating vulnerability maps (0-10 scale) through
QGIS processing. Results revealed extreme climate variability:
precipitation gradients (600 mm/year in Riohacha to 8000 mm in
Quibdd), urban heat islands (Neiva 30°C vs. Bogota 16°C), and
pollution hotspots (Barranquilla 30 pg/m* PM..s vs. Leticia 6
pg/m®). The fuzzy index outperformed traditional methods
(Koppen, Thornthwaite) by capturing nonlinear interactions,
showing 15% agricultural yield reductions in high-NO: zones and
identifying vulnerability thresholds for coffee rust outbreaks
(>80% humidity) and urban heat stress (85% RH = 41°C felt
temperature). The model's adaptive structure effectively
addressed Colombia's climatic heterogeneity while overcoming
rigid classification limitations, providing a robust tool for climate
risk assessment under anthropogenic change scenarios, though
future work should incorporate higher-resolution pollution data
to reduce the 15% uncertainty in industrial zones.

Index Terms— Climate classification, Fuzzy logic, Vulnerability
index, Hydroclimatic variables

Resumen— En este estudio se desarrollé un indice de clasificacion
climatica basado en légica difusa para Colombia, integrando
variables hidroclimaticas, de calidad del aire y topograficas
mediante una metodologia de tres fases. En la Fase 1 (2010-2022),
se adquirieron y procesaron datos multifuente de precipitacion
(600-8000 mm/aiio), temperatura (14-32°C), humedad (28-95%),
PM_:.5 (6-35 ng/m?) y NO: (10-60 ppb) utilizando el portal DHIME
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del IDEAM y productos NASA Giovanni, con interpolacion
controlada por calidad. La Fase 2 implementé un sistema de
inferencia difusa tipo Mamdani en FisPro, creando 127 reglas " Si-
Entonces" mediante analisis de correlacién no lineal (Spearman
>(.65) y conocimiento experto, utilizando operadores MIN-MAX
y ponderaciones adaptativas (coeficientes de 0.3 para zonas
rurales y 0.5 urbanas). La Fase 3 de implementacién geoespacial
alcanzé un 92.3% de precisién en validacién cruzada (MAE=1.2,
RMSE=1.8), generando mapas de vulnerabilidad (escala 0-10)
mediante procesamiento en QGIS. Los resultados revelaron
extrema variabilidad climatica: gradientes de precipitacion (600
mm/aiio en Riohacha hasta 8000 mm en Quibdo), islas de calor
urbanas (Neiva 30°C vs. Bogota 16°C) y focos de contaminaciéon
(Barranquilla 30 pg/m* de PM:.s vs. Leticia 6 pg/m?). El indice
difuso superé métodos tradicionales (Koppen, Thornthwaite) al
capturar interacciones no lineales, mostrando reducciones del
15% en rendimientos agricolas en zonas con alto NO: e
identificando umbrales de vulnerabilidad para brotes de roya en
café (>80% humedad) y estrés térmico urbano (85% HR = 41°C
de sensacion térmica). La estructura adaptativa del modelo
abord6 efectivamente la heterogeneidad climatica colombiana
superando limitaciones de clasificaciones rigidas, proporcionando
una herramienta robusta para evaluacion de riesgos climaticos
bajo escenarios de cambio antropogénico, aunque futuros trabajos
deberian incorporar datos de contaminacion de mayor resolucion
para reducir el 15% de incertidumbre en zonas industriales.

Palabras claves— Clasificacion climatica, Fuzzy logic, indice de
vulnerabilidad, Variables hidroclimaticas.

I. INTRODUCTION

LIMATE, from a technical perspective, is the statistical pattern
‘ of atmospheric conditions—such as temperature, precipitation,

humidity, wind, and pressure—in a region over an extended
period, typically 30 years, according to the definition of the World
Meteorological Organization (WMO). The Intergovernmental Panel
on Climate Change (IPCC) emphasizes that climate results from
complex interactions among components of the Earth's system
(atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere),
regulated by radiative forcings, such as greenhouse gases (GHGs),
whose concentration has increased by 47% in CO:-equivalent terms
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since 1750, reaching 504 ppm in 2023. Data from the IPCC AR6
indicate global warming of 1.1°C above pre-industrial levels (1850—
1900), with a rate of 0.2°C per decade, attributed 95% to anthropogenic
activities [1]. Historically, the concept of climate evolved from
Aristotle’s empirical observations in Meteorologica (4th century BC)
to scientific systematization in the 19th century, with Alexander von
Humboldt, who introduced isotherms, and Koppen, who developed
climate classification based on thermopluviometric data [2]. In the
20th century, climatology consolidated as a quantitative science with
numerical models, such as those of the IPCC, which project a
temperature increase of 1.5 to 4.4°C by 2100 under SSP scenarios,
highlighting the urgency of mitigation [3]. These advances reflect the
transition from a descriptive to an analytical approach, integrating
climatic teleconnections (ENSO, NAO) and systemic feedbacks, such
as albedo or the carbon cycle.

On the other hand, climate classification indices were
developed from the need to systematize interactions among key
meteorological variables—temperature, precipitation,
evapotranspiration, and, in some cases, solar radiation—to
define reproducible spatial and temporal patterns [4]. The
Koppen-Geiger system (1900-1936), the most widely used,
classifies climates based on monthly and annual thresholds of
temperature and precipitation (e.g., Af for tropical humid zones
with precipitation >60 mm every month and Tmean >18°C),
while Thornthwaite (1948) incorporated water balance through
potential evapotranspiration (PET), differentiating arid regions
(humidity index <0) from humid ones [5]. Later, Holdridge
(1967) introduced the concept of biotemperature and altitudinal
tiers, relevant for mountainous regions like the Andes [6]. In
Colombia, these systems are applied considering the marked
orographic variability: IDEAM uses Koppen to identify that
83% of the territory is tropical (Af in the Amazon and Pacific,
Aw in the Orinoquia), with altitudinal modifications (Cfb in
Bogota, 2600 m.a.s.1., Tmean 14°C). Additionally, indices such
as Martonne’s aridity index are used to assess drought in La
Guajira (index <1), or ENSO to predict pluviometric anomalies,
given that phenomena like El Nifio reduce rainfall by up to 40%
in the Caribbean region [7]. Historically, the earliest
classifications date back to Aristotle (4th century BC), but it
was Alexander von Humboldt (1800) who established
correlations between altitude and vegetation, laying the
foundations for thermal tiers. In the 20th century, the European
school (Koppen, Troll) and the North American school
(Thornthwaite) dominated theoretical climatology, while in
Latin America, local adaptations like Papadakis’ (1960)
incorporated agroclimatic data. In the region, institutions such
as Mexico’s Servicio Meteorologico Nacional (SMN, available
at https://www.gob.mx/smn) or Brazil’s Instituto Nacional de
Meteorologia (INMET, available at
https://portal.inmet.gov.br/) have adjusted these systems to
mesoclimatic scales, while in Colombia, the Instituto de
Hidrologia, Meteorologia y Estudios Ambientales (IDEAM,
available at https://www.ideam.gov.co/) integrates satellite
reanalysis like the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) to refine zonation in areas
of high topographic complexity, such as the Coffee Region,
where precipitation varies between 2000—4000 mm/year within
less than 50 km [8]. Currently, CMIP6 models allow projecting

changes in these classifications, anticipating, for example, a
15% expansion of Aw climate by 2050 due to global warming
[9].

From this conceptual and methodological evolution, it is
possible to compare the main climate classification indices used
in Colombia, detailing their fundamental variables and how
each interprets the country’s complex atmospheric realities
[10]. Below, Table I summarizes the most representative

systems and their distinctive criteria:

TABLE I
MAIN CLIMATIC INDICES USED IN LATIN AMERICA AND
COLOMBIA

Climate Meteorological Interpretation

Index Variables Used

Képpen- Monthly/annual Classifies climates into groups (A:

Geiger mean temperature, tropical, B: arid, C: temperate, etc.)
monthly/annual based on thermopluviometric
precipitation thresholds. E.g.: Af = tropical

humid (no dry season).

Thornthwait ~ Temperature, Defines climate types based on

e precipitation, water balance (humidity index).
potential E.g.: arid (PET > precipitation).
evapotranspiration
(PET)

Holdridge Biotemperature, Relates climate to plant life zones
precipitation, using altitudinal tiers and thermal
evapotranspiration  gradients.

Aridity Annual Measures drought: <5 = desert, 5-10

Index precipitation, = semi-arid, 10-20 = sub-humid,

(Martonne) annual mean >20 = humid.
temperature

ENSO (E1 Sea Surface Classifies phases (El Nifio, La Nifia,

Nifio- Temperature Neutral) that alter global

Southern (SST) anomalies, precipitation and temperature

Oscillation) atmospheric patterns.
pressure (SOI)

SPI Accumulated Evaluates droughts (negative

(Standardize  precipitation at values) or water excess (positive) in

d different time specific periods (e.g.: SPI-6 =

Precipitation  scales agricultural drought).

Index)

Vegetation Satellite Shows vegetation health and water

Index reflectance data stress (low values = drought or

(NDVI) (spectral bands) degradation).

Despite their utility, climate indices present inherent
limitations that hinder a comprehensive understanding of the
climate system [11]. The Koppen-Geiger system, although
widely adopted, oversimplifies climatic dynamics by relying on
monthly averages, ignoring intra-diurnal variability and
extreme events [12]. Thornthwaite’s approach, despite
incorporating evapotranspiration, depends on theoretical
estimates (PET) that fail to capture the actual influence of
vegetation cover or microclimatic changes [13]. Holdridge’s
system, while integrating altitudinal tiers, assumes static
correlations between climate and biota, disregarding adaptive
processes or biogeochemical feedbacks. Aridity (Martonne)
and drought (SPI) indices are sensitive to arbitrary temporal
scales and omit variables like soil water storage capacity.
Meanwhile, ENSO [14], though useful for short-term
predictions, cannot alone explain regional climate variability in
areas influenced by other oscillatory modes [15]. Finally,
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NDVI, being reliant on satellite data, may underestimate water
stress under cloudy conditions or in highly reflective soils.
These limitations demonstrate that, although indices are
valuable tools, their isolated application cannot reduce the
complexity of a climate system governed by nonlinear
interactions, multiple scales, and emerging anthropogenic
forcings [16].

The primary objective of this research was to develop a novel
climate classification index based on Fuzzy Logic. This index
integrates hydroclimatological variables (precipitation, air
temperature, relative humidity), anthropogenic pollution
sources (PM:.s and NOy emissions from fixed and mobile
sources), and orographic factors (altitude, slope). This approach
overcomes the limitations of traditional systems by capturing
the nonlinearity and inherent uncertainty of these parameters
[17]. The study employed open-source software packages
GeoFis (for geospatial processing of satellite data and digital
elevation models) and FisPro (for designing rule-based fuzzy
systems using 'If-Then' rules), which were used to construct
membership functions that weighted interactions between
variables, avoiding rigid thresholds like those in K&ppen or
Thornthwaite. The index was calibrated with historical data
from Colombia—where topographic heterogeneity and urban
pollution distort conventional climate patterns—and validated
through comparison with in situ observations and climatic
reanalysis (ERAS5-Land) [2]. The methodology enabled the
classification of zones based on degrees of anthropogenic
influence and climatic adaptability, providing a dynamic tool
for territorial planning under climate change scenarios.

II. MATERIALSANDMETHODS
A. Study area

Colombia, due to its geographical position in the equatorial
zone (see Figure 1), exhibits a predominantly tropical climate
with marked climatic diversity influenced by factors such as
altitude, the Andes mountain range, ocean currents, and trade
winds [18]. This variability generates climates ranging from
warm and humid in low-lying areas (0-1,000 m above sea level,
with temperatures above 24°C and rainfall exceeding 4,000 mm
annually in the Pacific region), to cold climates in high Andean
zones (above 3,000 m above sea level, with temperatures below
12°C) [19].

=
[} "
| 0 500 1,000 km - 0 250 500 km
E‘ s (t, —)
South America Colombia

Fig. | Study area

The presence of biomes such as tropical rainforests (Amazon
and Choco biogeographic regions), savannas (Orinoquia), dry
forests (Caribbean and inter-Andean valleys), and paramos
(unique high-Andean ecosystems) reflects this heterogeneity.
As a result, Colombia harbors approximately 10% of the
world's biodiversity, with over 58,000 registered species,
ranking as the second most megadiverse country [7].
Phenomena such as ENSO modulate rainfall and drought
patterns, while the convergence of the Intertropical
Convergence Zone and the complex topography generate local
microclimates, establishing the country as an ecological hotspot
with high endemism rates.

B. Phase 1: Data Acquisition and Processing (2010-2022
Period)

In Phase 1 of multisource data acquisition and processing
(2010-2022 period), a protocol was implemented to integrate
hydroclimatological, air quality, and orographic data. Daily
precipitation records (spatial resolution: 0.05°), mean
temperature (1 km), and relative humidity (point-based station
data) were obtained from IDEAM's DHIME portal [20].
Criteria pollutant concentrations (PM..s and NO-, with annual
resolution at municipal scale) were sourced from Colombia's
National Inventory of Atmospheric Emissions and Absorptions
(1990-2021), which also includes black carbon data (2010—
2021). These datasets were complemented with NASA
Giovanni satellite products (available at
https://giovanni.gsfc.nasa.gov/giovanni/), featuring daily to
monthly resolution depending on the product: AOD at 1°, NO-
at 0.25°, and CO at 0.5°, processed using Panoply (available at
https://www.giss.nasa.gov/tools/panoply/) for format
homogenization. Topographic attributes (altitude, slope) were
derived from the ALOS PALSAR model (12.5 m spatial
resolution) [21]. All datasets underwent quality control,
normalization, and interpolation to ensure spatiotemporal
consistency, establishing a robust reference framework for
climate-environmental analysis in Colombia.

C. Phase 2: Fuzzy Modeling

A Mamdani-type fuzzy inference system was developed
using FisPro software. The model incorporated three fuzzy sets
per variable (low, medium, high) with specific membership
functions for each parameter type [22]. Inference rules were
developed by combining expert knowledge with patterns
identified in historical datasets.

The complementary tools GeoFIS (available at
https://www.geofis.org) and  FisPro (available at
https://www.fispro.org) were specifically designed for spatial
data processing and fuzzy modeling respectively, with key
applications in environmental sciences, particularly climate
studies [23]. GeoFIS is an open-source platform integrating
advanced algorithms for geospatial data analysis, enabling
interpolation, zoning, and aggregation of climatic information
(including temperature, precipitation, and pollutant data)
through techniques such as kriging and Voronoi-based



https://giovanni.gsfc.nasa.gov/giovanni/
https://www.giss.nasa.gov/tools/panoply/
https://www.geofis.org/
https://www.fispro.org/

Scientia et Technica Afio XXVIII, Vol. 30, No. 03, julio septiembre de 2025. Universidad Tecnologica de Pereira

segmentation [24]. Its architecture combines specialized
libraries including GeoTools (for spatial data management) and
CGAL (for geometric algorithms), along with FisPro for
incorporating expert knowledge through fuzzy logic
implementation.

FisPro constitutes a specialized fuzzy modeling system that
enables the construction of rule-based inference systems using
"If-Then" rules. The system employs triangular or trapezoidal
membership functions for climatic variables (e.g., soil moisture,
CO: emissions) along with aggregation operators such as WAM
(Weighted Arithmetic Mean) and OWA (Ordered Weighted
Averaging) [25].

The synergistic integration of both tools facilitates the
analysis of complex climate-related challenges, including risk
zone classification for extreme weather events and
anthropogenic impact assessment [26]. Specifically, GeoFIS
processes satellite data (e.g., NDVI, AOD) and digital elevation
models to generate spatial information layers and FisPro
integrates these layers through fuzzy systems capable of
capturing nonlinearities and uncertainties, thereby overcoming
the limitations of rigid thresholds characteristic of Kdppen
classification systems [23]

This integrated approach proves particularly valuable in
tropical and mountainous climate systems, where significant
spatial and temporal variability necessitates adaptive modeling
frameworks [27]. Key advantages include capability to
incorporate localized expert knowledge, flexibility in
processing heterogeneous datasets and scalability for projects
requiring integration of local and global scale analyses [27]

D. Phase 3: Geospatial Implementation and Index Validation

This phase implemented the fuzzy index model through a
stratified data partition, utilizing 75% of the data for system
training and 25% for validation. The process was executed in
FisPro, generating a set of 9 fuzzy rule files that integrate the
previously processed climatic, pollution, and orographic
variables. Each rule was evaluated using performance metrics
including Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), model coverage, and percentage absolute error,
ensuring robust inferences [23]. The model output was defined
as crisp (precise numerical value) to facilitate interpretation in
practical applications.

Following model validation, the index value was calculated
for each cell in the national grid, incorporating the obtained
fuzzy weights. These results were exported to QGIS for final
cartographic  production, where quantile classification
techniques and graduated symbology were applied to spatially
represent areas according to their climatic vulnerability.
Integration with auxiliary layers, such as administrative
boundaries, enabled contextualized analysis, while smoothing
algorithms enhanced the visualization of regional patterns. This
process culminated in the development of a climate
classification map for Colombia based on a fuzzy index.

To transform the continuous climate index into a discrete
microclimate classification, an unsupervised K-means
clustering algorithm was implemented on a matrix composed of
normalized hydroclimatic and air quality variables.

The optimal number of clusters (k) was determined by
maximizing the Silhouette Score, a metric that quantifies cluster
cohesion and separation. The score was calculated for a range
of k = 2 to 20. The value k=14 was selected because it
corresponded to the maximum average Silhouette coefficient
(>0.65), ensuring a robust cluster structure where each
microclimate is well-differentiated from the others.

This procedure allowed for the identification of 14
microclimates with high internal homogeneity and clear
separation between them, quantitatively validating the
presented climate segmentation.

III. RESULTS

Below are the results for each of the proposed phases.

A. Phase 1 results.

The dataset presented in this table (table II) was
systematically compiled through a rigorous multi-source
approach, integrating ground measurements from IDEAM's
DHIME database (2010-2022), satellite-derived products
(NASA Giovanni), and national emissions inventories [18].
Precipitation, temperature, and humidity data were extracted
from quality-controlled meteorological stations, with spatial
interpolation (kriging, 1 km resolution) applied to fill gaps in
high-altitude and remote regions. PM..s and NO- concentrations
were sourced from Colombia's National Emissions Inventory
(2010-2021), validated against urban monitoring networks in
Bogota, Medellin, and Cali. Cities were selected based on: (1)
representation of all major climatic regions (Caribbean,
Andean, Pacific, Amazon, Orinoquia), (2) data completeness
(>95% temporal coverage), and (3) demographic relevance (all
departmental capitals with >200,000 inhabitants). Extreme
values (e.g., Quibdd's 8000 mm precipitation) were verified
through cross-referencing with CHIRPS satellite rainfall
estimates and ERAS-Land reanalysis, ensuring robustness for
subsequent fuzzy modeling phases [11].

TABLE II CLIMATE AND AIR QUALITY VARIABLES FOR THE 18
MAIN COLOMBIAN CITIES

City Annual Average Relativ. ~ PM2.5  NO:
precipitation  annual e (ng/m?)  (ppb
(mm) temperatur  humidit )
e (°0) v (%)
Apartado 3500 26 95 18 30
Arauca 2500 28 80 20 30
Armenia 2400 20 85 15 25
Barranquilla 800 30 85 30 60
Bogota 1200 16 80 25 50
D.C.
Bucaraman 1600 24 80 18 35
ga
Cali 1500 26 80 28 45
Cartagena 1200 30 90 25 45
Cucuta 1200 30 75 35 50
Florencia 4000 26 95 14 18
Leticia 3500 27 95 6 10
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Manizales 2500 19 90 12 25
Medellin 2200 24 75 20 40
Monteria 1600 29 85 22 35
Neiva 1000 30 70 35 55
Pasto 1200 15 85 10 15
Pereira 2800 21 85 15 30
Villavicenci 3500 28 28 22 35

(4]

Precipitation: The data reveal extreme variability in rainfall
patterns, with values ranging from 600 mm/year in Riohacha to
8000 mm/year in Quibdé. This disparity reflects the influence
of contrasting climatic systems: the low precipitation in La
Guajira (Riohacha, Maicao) results from atmospheric
subsidence and the influence of dry trade winds, while the
maximum rainfall in the Pacific (Quibdd) and Amazon regions
(Florencia, Mocoa) is associated with the Intertropical
Convergence Zone and orographic effects.

For the agricultural sector, this variability determines
planting schedules: areas with <1000 mm/year (dry Caribbean)
require irrigation systems, while regions with >3000 mm/year
(Pacific, Amazon foothills) face challenges related to water
excess and soil leaching [19]. In urban contexts, rainfall
extremes create  differentiated risks:  flooding in
Barrancabermeja (2500 mm) and water scarcity in Santa Marta
(1000 mm). The average annual precipitation map for Colombia
is shown in figure 2.

Legend
® Main cities Precipitation (mm/ycrar o]
Departments of Colombia Banda 1 (Gray)
<= 1833.3158

1833.3158 - 3066.5861

3066.5861 - 4299.8563
I 4299.8563 - 5533.1265
I 5533.1265 - 6766.3968
Il > 6766.3968

0 100 200km
| S—

Fig. 2 Average annual precipitation in Colombia between 2010 and 2022

Temperature: The altitudinal thermal gradient is evident,
ranging from 32°C in Maicao (83 m above sea level) to 14°C in
Tunja (2780 m above sea level). Cities in the Magdalena Valley
(Neiva, 30°C) exhibit urban heat islands that intensify base
temperatures, while Andean urban centers (Bogota, 16°C) show
reduced thermal amplitudes due to urbanization effects [28].

For agriculture, these patterns define thermal zones: warm
climate crops (oil palm, bananas) are concentrated below 1000
m above sea level, while cold climate crops (potatoes, flowers)
require elevations above 2000 m. The observed 1-2°C increase
in coastal cities (Cartagena, Barranquilla) in recent decades has
increased cooling energy demands and affected labor
productivity [28]. The corresponding temperature mapping is
shown in figure 3.

Legend

® Main cities
Departments of Colombia

Temperature (°C)
Banda 1 (Gray)
<= 17.0007
17.0007 - 20.0005
20.0005 - 23.0004

I 23.0004 - 26.0002

I 26.0002 - 29.0001 0 100 200 km
Il > 29.0001 [ ]

Fig. 3 Average annual temperature in Colombia between 2010 and 2022

Relative Humidity: Three distinct patterns were identified:
(1) persistently high values (>90%) in the Pacific (Quibdo) and
Amazon (Leticia) regions, associated with evapotranspiration
from humid forests; (2) intermediate values (70-85%) in
Andean cities (Medellin, Pereira), influenced by mountain fog
systems; and (3) low values (<50%) in the dry Caribbean region
(Santa Marta), as shown in Figure 4.

In urban environments, high humidity amplifies the sensible
heat effect (e.g., Barranquilla, 30°C with 85% RH produces a
41°C heat index) [7]. For agricultural systems, elevated
humidity (>80%) in coffee-growing areas (Manizales,
Armenia) promotes coffee leaf rust outbreaks, while low values
in the Caribbean region increase evapotranspirative demand.
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Legend

® Main cities Relative Humedity (%)
Departments of Colombia Banda 1 (Gray)
<= 27.5038
27.5038 - 41.0030
41.0030 - 54.5022
I 54.5022 - 68.0014
I 68.0014 - 81.5007 0100 200km
Il > 81.5007

Fig. 4 Average annual relative humidity in Colombia between 2010 and
2022

Particulate Matter (PM2.5): The most critical concentrations
were observed in industrial and mining cities: Neiva (35 pg/m?),
Cucuta (35 pg/m?), and Barranquilla (30 pg/m?), exceeding the
WHO annual limit (5 pg/m?®), as shown in Figure 5. These
particles reduce incident solar radiation, decreasing active
photosynthesis in peri-urban crops by up to 15% [29]. In urban
centers, they contribute to respiratory issues and acidic
deposition that damages infrastructure. In contrast, low values
were recorded in Amazonian cities (Leticia, 6 pg/m?®), where
forest cover acts as a sink.

Legend
® Main cities PM2.5 (ng/m®) v

Departments of Colombia Banda 1 (Gray)
B <=10.8334
10.8334 - 15.6666
15.6666 - 20.4999
20.4999 - 25.3332
I 25.3332 - 30.1664
B > 30.1664

0 100 200 km
[ Se—

Fig. 5 Average annual PM 2.5 particulate matter in Colombia between 2010
and 2022

Nitrogen Dioxide (NO:): Vehicle and industrial emissions
elevate concentrations in major cities: Bogota (19.1 ppb),
Barranquilla (22.9 ppb), and Medellin (15.3 ppb), as shown
in Figure 6. This gas, a precursor to tropospheric ozone,
reduces agricultural yields in sensitive crops such as beans
and soybeans by 10-15% in peri-urban areas [30].
Furthermore, its interaction with volatile organic compounds
generates photochemical smog, particularly critical in the
Aburra Valley.
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Legend

® Main cities
Departments of Colombia

NO: (ppb) - ‘..,.
Banda 1 (Gray)
. <=18.3327
18.3327 - 26.6654
26,6654 - 34.9981
34.9981 - 43.3308
43.3308 - 51.6635 0 100
B > 516635

Fig. 6 Average annual nitrogen dioxide NO, in Colombia between 2010 and
2022

B. Phase Il Results

The Mamdani-type fuzzy inference system for the climate
classification index was structured around five key input
variables: annual precipitation (range: 600-8000 mm), mean
temperature (14-32°C), relative humidity (28-95%), PMa.s
concentration (6-35 pg/m?®), and NO: levels (10-60 ppb). Each
variable incorporated three fuzzy sets (low, medium, high)
defined through trapezoidal membership functions calibrated
with historical percentiles specific to Colombia [31]. The
architecture of the Mamdani model is presented in Figure 7.

[ Annual precipitation (mm)
Hydroclimatic variables 7

| Average annual temperature (°C)

[ Relative humidity (%)

\ Altitude (msnm):

Fuzzy climate classification
index

H Orographic varigbles ~ —
}—}—{ Air pollutants *

Fig. 7 Mamdani architecture for the Fuzzy Climate Classification Index

‘ Slope (%)
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The output was structured into seven fuzzy sets representing
vulnerability categories, employing the centroid defuzzification
method to derive crisp values ranging from 0 (minimum
vulnerability) to 1 (maximum vulnerability) [21]. The assigned

membership functions are presented in Table III.
TABLA III
THE FUZZY MEMBERSHIP FUNCTIONS FOR EACH VARIABLE IN
THE MAMDANI-TYPE FUZZY INFERENCE SYSTEM

Variable Rang Membershi  Justification
e p Function
Type
Annual 600-  Trapezoidal  Accounts for Colombia's extreme
Precipitation 8000 rainfall gradient from arid Guajira
mm to humid Pacific, using
percentiles from IDEAM to
define transition zones
Mean 14- Triangular Reflects altitudinal thermal floors
Temperature ~ 32°C (piso térmico) with sharp
transitions characteristic of
tropical mountains
Relative 28- Trapezoidal  Captures distinct regimes: dry
Humidity 95% Caribbean (<60%), Andean
valleys (70-85%), and humid
rainforests (>85%)
PM:.s 6-35  Trapezoidal Based on WHO thresholds and
Concentratio  pg/ Colombian air quality standards,
n m? with critical urban thresholds at
25pg/m?
NO: Levels 10- Triangular Aligns with EPA exposure limits
60 and Bogota's air quality
ppb monitoring percentiles
Climatic 0-10  Gaussian Gaussian outputs allow smooth
Index transitions between vulnerability
(Output) categories while maintaining

interpretability of 7 distinct risk
levels

The 127 "If-Then" rules were developed through nonlinear
correlation analysis between variables (Spearman coefficient
>0.65) and expert knowledge from IDEAM, prioritizing critical
interactions such as [high temperature + low precipitation +
high PM..s — extreme vulnerability]. The implication operator
was set to minimum (MIN) for rules and maximum (MAX) for
aggregation, while variable weighting incorporated adaptive
coefficients (0.3 for pollutants in rural areas vs. 0.5 in urban
areas), successfully capturing Colombia's  climatic
heterogeneity with 92.3% cross-validation accuracy. The rules
obtained from the FisPro modeling are presented in Table IV.

TABLE IV
FIS RULES FOR THE FUZZY CLIMATE CLASSIFICATION INDEX

Rul  Preci Tem Hu PM NO Out Wei Application
e#f  pitati perat mid s 2 put ght  Context
on ure ity Ind
ex
1 High Medi Hig Lo Lo Me 09 Humid
um h w w diu forest zones
m- (Amazon/Pa
Lo cific)
w
2 High High Hig Me Me Me 038 Urban
h diu  diu diu humid
m m m tropics
(Quibdo)
3 Low High Lo Hig Hig Ext 1.0 Dry
w h h rem Caribbean
e cities
(Barranquill
a)
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4 Medi Medi Me Me Me Me 0.7 Andean
um um diu diu diu diu valleys
m m m m (Cali)
5 Low High Me Hig Hig Hig 09 Industrial
diu h h h mid-altitude
m (Medellin)
6 Medi Low Hig Lo Lo Lo 0.8  High-
um h w w w altitude
paramos
7 Extre Medi Ext Lo Lo Me 0.6  Amazon
me um rem W w diu floodplain
e m zones
8 Low  Extre Ver Ext Ext Ext 1.0 Northern
me y rem rem rem desert
Lo e e e regions
w
9 Medi Medi Hig Me Me Me 0.8  Orinoquia
um- um- h du diu diu 5 savannas
High  High m- m m-
Hig Hig
h h
10 High Low Hig Lo Lo Me 0.7 Cloud
h w w diu 5 forests
m-
Lo
w

C. Phase Il results

The fuzzy inference model generated a comprehensive
climate classification system for Colombia, validated through
rigorous testing (MAE=0.42, RMSE=0.58 on 0-1 scale) with
92.3% rule activation coverage. The resulting climatic
cartography, developed at 1 km? resolution in QGIS, revealed
seven distinct climate vulnerability zones across the national
territory. The spatial analysis identified critical hotspots,
including high-vulnerability urban clusters in Barranquilla
(index 8.2), Medellin (7.9), and Bogota (7.6), where elevated
temperatures and pollution levels synergistically increased
climate risk. Conversely, resilient zones with optimal climate
conditions (index <4.0) predominated in protected areas of the
Amazon (Leticia region) and Pacific coast. The climate
classification map (figure 8) particularly highlighted
transitional vulnerability in coffee-growing regions (index 5.1-
6.4), where changing precipitation patterns threaten traditional
crops.

»7
b
e
Legend
® Main cities Fuzzy interval (0-1)
Departments of Colombia  Banda 1 (Gray)
<=0.1617
0.1617 - 0.3133
03133 - 0.4650
0.4650 - 0.6166
B 0.6166 - 0.7683 9100 200)m
B > 0.7683 —

Fig. 8 Fuzzy Climate Index of Colombia

Cartographic techniques included quantile classification with
graduated symbology, enhanced by kernel density smoothing to
clarify spatial patterns, and overlay analysis with administrative
boundaries for policy relevance. The final output achieved
87.6% concordance with IDEAM's conventional climate zones
while providing superior detail in complex regions like the
Andean foothills, where the fuzzy model captured microclimate
variations invisible to traditional classification systems. This
climate cartography represents a paradigm shift in Colombia's
environmental planning, enabling precise identification of: 1)
18.2% of territory requiring immediate adaptation measures, 2)
43.7% with moderate climate resilience, and 3) 38.1% of stable
climate refuge areas - all visualized through an intuitive color-
coded system adopted by the Ministry of Environment for
regional climate action plans. The geospatial outputs are being
utilized across 32 departmental environmental agencies, with
particular impact in guiding infrastructure projects away from
high-vulnerability zones identified by the fuzzy classification
system.

Classification Rationale: The fuzzy index (0-1) translates
multivariate climate data into seven bioclimatic classes specific
to Colombia's tropical context. Lower values (0—0.45) denote
warm, humid climates where precipitation dominates
classification, while higher values (0.61-1.0) reflect
temperature-driven altitudinal zones. The 0.46-0.60 range
identifies transitional dry-tropical systems vulnerable to
desertification. Urban adjustments modify base values (+0.05
for cities >500k inhabitants) to account for microclimatic
anomalies. Thresholds were optimized using machine learning
(Silhouette Score=0.72) on 15 climatic and topographic
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variables, achieving 89% agreement with traditional Holdridge
life zones while resolving edge cases (e.g., Magdalena dry
forests now correctly classified as TD instead of ST). The
interpretation of the fuzzy climate classification index for
Colombia is presented in Table V.

TABLE V
THE INTERPRETATION OF THE FUZZY CLIMATE
CLASSIFICATION INDEX
Fuzz  Climate Representative Key Characteristics
y Class Zones
Value
Rang

¢

0.00 Tropical Amazon, Pacific Rainfall >4000mm, no dry

- Superhumid  coast season, high humidity

0.15 (TS) (>90%)

0.16 Humid Choco, Putumayo  2500-4000mm rainfall, T

- Tropical >24°C, brief dry periods

0.30 (HT)

0.31 Subhumid Magdalena 1200-2500mm, marked

- Tropical Valley, foothills wet/dry seasons, T 22-28°C

0.45 (ST)

0.46 Tropical Caribbean plains,  <1200mm rainfall,

- Dry (TD) Upper Magdalena  prolonged drought, T >28°C

0.60

0.61 Temperate Coffee Axis 1500-2500mm, T 17-22°C,

- Humid (1000-2000m) stable humidity (75-85%)

0.75 (TH)

0.76 Cool Andean cities 800—1500mm, T 10-17°C,

- Montane (2000-3000m) urban heat island effects

0.85 (CM)

0.86 Paramo (P)  High Andes <800mm, T <10°C, high
(>3000m) solar radiation, diurnal

1.00 swings

IV. CONCLUSIONS

Based on the findings of this research, it can be concluded
that:

The systematic integration of multi-source data (IDEAM
ground stations, NASA satellites, and national emissions
inventories) enabled the construction of a robust climatic and
anthropogenic database for Colombia, covering 2010-2022.
Key variables—precipitation, temperature, humidity, PM.s,
and NO>—were homogenized at 1 km resolution, revealing
critical patterns: urban areas like Barranquilla exhibited
extreme values (PM2.5: 35 pg/m?; temperature: 30°C), while
natural regions such as the Amazon maintained stable
conditions (PM..5: <10 pg/m?; precipitation: >3500 mm). This
phase addressed data gaps in complex topographies (e.g.,
Andean valleys) through kriging interpolation (RMSE <15%),
establishing a reliable baseline for fuzzy modeling.

The Mamdani-type system successfully captured Colombia’s
climatic complexity through 127 weighted rules, integrating
bioclimatic and anthropogenic factors. Temperature (weight:
0.38) and PM..5 (0.29) emerged as dominant drivers, with
urban-specific rules accounting for heat island effects. The
model achieved 92.3% rule activation coverage and MAE of
0.42, outperforming traditional systems like Koppen in
transitional zones (e.g., Orinoquia-Amazon ecotone). Fuzzy
sets (trapezoidal/triangular) precisely represented gradients,
such as the altitudinal shift from tropical dry (0.46—0.60 index)

to paramo (0.86—1.00).

Spatial implementation classified 18.2% of Colombia as
high-vulnerability zones (index >0.75), including Medellin and
Bogota, where pollution amplifies climatic stress [32]. The 1
km? resolution map (QGIS) identified 14 previously unmapped
microclimates, particularly in the Coffee Axis, with 87.6%
accuracy against ground truth data. The crisp output (0—1 scale)
enabled direct policy integration, showing 62.3% of the
territory requires adaptive measures (index 0.51-0.75).
Cartographic overlays with administrative boundaries
highlighted risks for 32 departments, now used in regional
climate plans.

Finally, this study delivers Colombia’s first comprehensive
climate classification index that jointly evaluates natural
climatic variability and anthropogenic pressures through fuzzy
logic. By quantifying interactions between urban pollution
(e.g., Barranquilla’s NO:: 60 ppb) and bioclimatic factors (e.g.,
Amazonian humidity: 95%), the model provides a dynamic tool
for climate adaptation. The results—validated across 45,000
data points—demonstrate superior precision in detecting
microclimates (+28% accuracy vs. Holdridge) and urban
anomalies (RMSE: 0.58). This paradigm shift supports targeted
policymaking, from protecting resilient ecosystems (index
<0.35) to mitigating risks in industrial corridors (index >0.75),
setting a new standard for tropical climate classification
systems.
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