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REACTION-DIFFUSION EQUATIONS: A CHEMICAL APPLICATION 
 

RESUMEN 
Obtenemos soluciones exactas para un sistema de reacción-difusión asociado a 
una reacción cubica autocatalítica entre dos sustancias químicas según la regla 

  con tasa . Para obtener dichas soluciones empleamos una 

transformación de onda.  
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ABSTRACT 
We give exact solutions to a reactions-diffusion system corresponding to cubic 
autocatalytic reaction between two chemicals according to the rule 

  with rate . We apply a traveling wave transformation in 

order to obtain these solutions. 
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1. Introduction 

A question (Scott, 2005, pp. 783) is: How did life appear 

and develop on Earth? Although there is not complete 

agreement, a convincing answer is that given the required 

conditions (which were almost surely satisfied billions of 

years ago), life spontaneously emerged through the 

endless battle of survival of the fittest from a primordial 

chemical soup. The theory of random catalytic networks 

(Kauffman, 1995) shows that autocatalytic reactions are 

likely in this context; thus, the theory of interactions 

between chemical reactions and molecular diffusion takes 

center stage in emergence of biological life from atoms 

and molecules in a system.  

Today, reaction-diffusion systems have found many 

applications ranging from chemical and biological 

phenomena to medicine (physiology, diseases, etc.), 

genetics, physics, social science, finance, economics, 

weather prediction, astrophysics, and so on (Aronson & 

Weinberger, 1975; Grindrod, 1996; Murray, 2002; Scott, 

2003). Even for phenomena that bear no initial 

resemblance to these processes, it is sometimes useful 

and productive to use the reaction-diffusion metaphor in 

order to gain insight into their dynamics.  

An important contribution to this subject comes from the 

theory of pattern formation in nature. Many physical 

phenomena giving rise to natural patterns can be 

understood in terms of the interaction of a short-range 

self-enhancing reaction and a long-range antagonistic 

reaction. Take a fire, for example. It is a self-enhancing 

process: more heat is released as more fuel is burned. In 

the process oxygen and fuel which act as antagonistic 

factors are consumed and this may lead to a fire’s 

extinction if fuel is not replenished. Also, the heat 

produced is transported from its local source through 

diffusion. Thus, we have the two main ingredients for 

pattern formation, namely, a local antagonistic interaction 

between two species (or reactions) coupled with a means 

of transport of their products. Historically, this is also one 

of the first examples of reaction-diffusion systems 
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studied scientifically, for obvious reasons given the 

necessity for improved heating and lighting at the 

beginning of the industrial age. In his “Christmas 

Lectures” at the Royal Society in London, Michael 

Faraday discussed the importance of understanding the 

candle flame and its analogy with the process of 

respiration of biological organisms (Faraday, 1861). The 

flame of the candle is an archetypical nonlinear reaction-

diffusion system that today, after decades of research, 

provides a basis for the science of combustion. In this 

article, we review the essential topics in the field of 

reaction-diffusion systems from a theoretical point of 

view and also consider some of their numerous 

applications.  

2. Theoretical Aspects 

A reaction-diffusion (RD) equation is typically obtained 

by combining Fick’s law of diffusion with the chemical 

reaction rate law. Although the theory can be made 

rigorous by using the theory of stochastic differential 

equations leading to the Fokker-Planck equation 

(Øksendal, 2003), we present here a heuristic argument. 

If we consider for simplicity a small domain interval on 

the line inside which we have a concentration c  of some 

reacting species, then the diffusive flux 
in

J  of c  into 

one side of the small region will depend on the 

concentration gradient, , at that boundary and the 

diffusion coefficient, D , with 

 

 

The parameter 0D >  is called diffusivity with physical 

units of 2m s/ . The diffusive flux out of the region at 

the other side 
out

J  will similarly be given by     

 
, 

where the concentration gradient is now evaluated at the 

other boundary. The rate at which the concentration 

grows due to diffusion then depends on the difference 

between these two fluxes and so involves the second 

derivative  . If we add a kinetic reaction rate 

term ( )r c , then the reaction-diffusion equation, which 

gives the rate of change of the concentration c  in time at 

any spatial point, has the general form  

 

                (1) 

 

Some problems related to population dynamics, 

competition between species and chemistry lead to a 

system of RD equations ( RD system) of the form 

 

        (2) 

 

 From a mathematical point of view, systems of equations 

such as (2) must be well posed in order to exhibit 

appropriate solutions. The problem is fully specified once 

appropriate initial conditions 

 

        
0 0

( 0) ( )    and   ( ,0) ( )u x u x v x v x, = =      (3) 

 

are known. For an IVP (initial-value problem), one 

naturally asks whether there are solutions. In the case of 

reaction-diffusion systems, there are two different aspects 

to consider : local existence and global existence of the 

solutions. By local existence we mean the existence of 

the solutions over a short time interval. Global existence 

properties are exhibited by the solutions of the IVP when 

they are known to exist for all positive time. 

These questions are difficult to deal with in general for 

RD systems although there is a well-developed body of 

results available in the literature (Grindrod, 1996). 
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Moreover, even if the existence of a particular type of 

solution is established, further important theoretical 

questions involve the uniqueness of the solution and the 

stability of this solution to small perturbations.  

3. A chemical application 

A simple archetypical example for a RD system is a 

cubic autocatalytic reaction between two chemicals 

according to the rule  with rate . 

Denoting by u  the concentration of A  and by v  that of 

B , the two species satisfy  the equations: 

 

                                         (4) 

 

In system (4) 
A

D  and 
B

D  are the constant diffusion 

rates of A  and B , respectively. We are interested in 

exact solutions to system (4). To simplify the 

calculations, we first make the transformations 

 

                                                (5) 

to obtain the system 

 

                                             (6) 

where  B

A

D
D

D
=  .   

Suppose that functions ( , )U U x t=  and ( , )V V x t=  

are solutions to system (6). Then functions 

  and   

will be solutions to original system (4).  In other words, if 

we know a solution to system (6), then we simply replace 

x  with  and  t with   to obtain a solution to 

system (4). For this reason, it suffices to solve system (6).  

 

4. Exact solutions to the proposed model 
 
We seek solutions to system (6) in the traveling wave  
 
 
                U(x, t) = a0 + a1tanh(k(x – λt))       (7) 

 
                V(x, t) = b0 + b1tanh(k(x – λt))        (8) 
 

 
Substituting expressions (7) and (8) into system (6) we 

obtain an algebraic system of two polynomial equations 

in the variable z = exp(k(x – λt)). Equating the 

coefficients of  iz  ( 0,1,2, ...i = ) in each equation to 

zero, we obtain an algebraic system . Solving it we obtain 

following solution:  

 

0 1
a b= ,  

1 1
a b= - ,  

0 1
b b= , 

1 1
b b= ,  

1
/ 2k b= - , λ =  , 1.D =  

 

The value of 
1

b  may be arbitrary, that is, 
1

b  is a free real 

or complex parameter, say 
1

b b= .  Thus, a solution    

(U, V) to system (6) with 1D =  is given by  
 

     (9)               

   (10)       

 
We conclude that when DA = DB = δ functions u  and 
v  given by 
 
               u = u(x, t) = b(1 + tanhξ), 
               v = v(x, t) = b(1 -  tanhξ),        (11)                           

           ξ = ξ(x ,t) = . 

 
are solutions to system  (4).  
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Let 0b > .  Observe that    0 2u b< <     and  

0 2v b< <  for any x  and t . The graphics of 
functions u  and v  given by (11) are shown in Figure 1 
over the domain -6 ≤ x ≤ 6 and 0 ≤ t ≤ 1.  Observe that 
the corresponding surfaces meet in the three dimensional 
space through the line  

 

 

 
Figure 1.  Graphics of u  and v   given by (11) for 

1b = , δ = 10  and ρ = 5.  

On the other hand, for a fixed 
0

0x > , curves   

0
( ) ( , )f t u x t=  and 

0
( ) ( , )g t v x t=  

meet at  .  We illustrate this fact in Figure 2.  

 

 
Figure 2. 

 
2. Conclusions. 
 
We have obtained exact solutions for a cubic 
autocatalytic reaction between two chemicals in the case 
when their constant diffusion rates coincide.  The 
obtained expressions are relatively simple and allow 
simulating the associated chemical process. An open 
question is: are there exact solutions in the case when the 
diffusion rates are different? 
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