APLICACIÓN DEL TEOREMA DEL PUNTO FIJO DE BANACH EN LA RESOLUCION DE LA ECUACION DEL PENDULO FORZADO

Application Of The Banach's Fixed Point Theorem In The Resolution Of Forced Pendulum Equation

RESUMEN

En el presente artículo se muestra un resultado de existencia y unicidad de solución para la ecuación general del péndulo forzado sin fricción, usando como herramienta el Teorema del punto fijo de Banach.

PALABRAS CLAVES: Contracción, teorema del punto fijo, ecuación del péndulo.

ABSTRACT

In this paper we show a result of existence and uniqueness of solution for the Forced Pendulum Equation using the Banach's Fixed Point Theorem.

KEYWORDS: Contraction, fixed point theorem, pendulum equation.

PEDRO PABLO CÁRDENAS A.

Licenciado Matemáticas Computación. Magíster en Enseñanza la Matemática. Estudiante de Doctorado en Matemáticas. Universidad de la Frontera. Temuco - Chile. Profesor de Planta (Auxiliar) Departamento de Matemáticas. Universidad Tecnológica de Pereira ppablo@utp.edu.co

MARYLUZ LARGO A.

Candidata a Licenciada en Matemáticas y Física.
Departamento de Matemáticas.
Universidad Tecnológica de Pereira maryluz543@yahoo.es

ALEXANDER SEPULVEDA C.

Ingeniero Matemático.
Licenciado en Ciencias de la Ingeniería.
Candidato a Doctor en Ciencias Matemáticas.
Universidad de la Frontera. Temuco - Chile.
alex.sepulveda.c@gmail.com

1. INTRODUCCIÓN

Se considera el siguiente problema de Dirichlet para la ecuación general del péndulo

$$\begin{cases} u'' + bsen(u) = f \\ u(0) = u_0, u(\pi) = u_{\pi} \end{cases}$$

Para este problema, se mostrará la existencia y unicidad de solución utilizando el principio de las contracciones de Banach-Picard. Se presentaran algunas definiciones previas las cuales servirán como soporte para la resolución del problema en cuestión.

El modelo considerado es un caso particular de los estudiados por varios autores [1], [2] los cuales utilizaron

diferentes herramientas de los métodos topológicos y de la teoría de grado [3], al igual que técnicas computacionales.

2. PRINCIPIO DE LAS CONTRACCIONES DE BANACH-PICARD

Definición 2.1. Sean (E,d) un espacio métrico y A un subconjunto de E. $T:A \rightarrow A$ es una contracción si

 $\exists \alpha \in R/0 < \alpha < 1$ tal que $d(Tx, Ty) \leq \alpha d(x, y)$

Teorema 2.1. (Banach-Picard). Sean (E,d) un espacio métrico completo, A un subconjunto cerrado de E y

Fecha de Recepción: 07 Septiembre de 2007 Fecha de Acentación: 09 Noviembre de 2007 $T: A \rightarrow A$ una contracción, entonces T tiene un único punto fijo, o sea, existe un único $y \in A$ tal que Ty = y.

Demostración. Primero obsérvese que T es continua, ya que dado $\varepsilon > 0$, alcanza con tomar

$$d(x,y) < \frac{\varepsilon}{\alpha}$$
 para que $d(Tx,Ty) < \varepsilon$.

Dado $x \in A$, se define inductivamente la siguiente sucesión:

$$x_0 = x, \qquad x_{n+1} = Tx_n .$$

Por inducción en n se tiene que

$$d(x_{n+1},x_n) \le \alpha^n d(x_1,x_0)$$

Trivialmente se cumple la desigualdad para n = 0, ahora se supone válida para cualquier n.

$$d(x_{n+2}, x_{n+1}) = d(Tx_{n+1}, Tx_n) \le \alpha d(x_{n+1}, x_n)$$

$$\le \alpha \alpha^n d(x_1, x_0) = \alpha^{n+1} d(x_1, x_0)$$

Además, si $p \ge 1$,

$$d(x_{n+p}, x_n) \le \sum_{i=1}^{p} d(x_{n+i}, x_{n+i-1})$$

$$\leq \sum_{i=1}^{p} \alpha^{n+i-1} d(x_1, x_0)$$

$$\leq \alpha^n d(x_1, x_0) \sum_{i=1}^p \alpha^{i-1} = \alpha^n d(x_1, x_0) \frac{1 - \alpha^p}{1 - \alpha}$$

Por lo tanto, $d(x_{n+p},x_n) \to 0$ cuando $n \to \infty$, pues $\alpha < 1$, luego $(x_n)_{n \ge 0}$ es de Cauchy. Como A es un subconjunto cerrado de un espacio completo, éste es completo y así se tiene

$$\exists y \in A / x_n \to y$$

Por la continuidad de T, resulta que y es un punto fijo de T, pues

$$Ty = T \lim_{n \to \infty} x_n = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} x_{n+1} = y$$

además y es el único, pues si z fuera otro punto fijo de T distinto de y se tendría

$$d(y,z) = d(Ty,Tz) \le \alpha d(y,z) < d(y,z)$$

lo que sería un absurdo.

Observación 2.1. El punto fijo y de T es un atractor de T, esto es,

$$\lim_{n \to \infty} T^n x = y, \quad \forall x \in A$$

Corolario 2.1. Si $T: A \to A$ verifica que existe $p \in \mathbb{N}/T^p$ es una contracción, entonces T tiene un único punto fijo.

Demostración. Como T^p es una contracción, existe un único $x \in A$ tal que $T^p x = x$. Entonces

$$T^p T x = T T^p x = T x,$$

Por lo que Tx es un punto fijo de T^p , como x es el único punto fijo de T^p , Tx = x y además x es el único punto fijo de T, pues todo punto fijo de T lo es también de T^p .

3. RESULTADOS DE EXISTENCIA Y UNICIDAD DE SOLUCION

Con base a lo expuesto anteriormente, se demuestra bajo ciertas hipótesis la existencia y unicidad de solución del problema en cuestión:

$$\begin{cases} u'' + bsen(u) = f \\ u(0) = u_0, u(\pi) = u_{\pi} \end{cases}$$
 (3.1)

con $b \in R$ y $f \in C[0,\pi]$.

Supóngase $v \in C[0,\pi]$ y considérese además el problema

$$\begin{cases} u' = f - bsen(v) \\ u(0) = u_0, \ u(\pi) = u_{\pi} \end{cases}$$
 (3.2)

así, la única solución a este problema es

$$u(t) = u_0 + \frac{u_0 - u_{\pi}}{\pi} t + \int_0^{\pi} G(t, s) [f(s) - bsen v(s)] ds$$

siendo

$$G(t,s) = \begin{cases} \frac{(s-\pi)t}{\pi}, & \text{si } t \leq s \\ \frac{(t-\pi)}{\pi}, & \text{si } s \leq t, \end{cases}$$

donde G es la función de Green asociada al problema.

Luego, si se define $T: C[0,\pi] \to C[0,\pi]$ como

$$T(v) = u_0 + \frac{u_0 - u_{\pi}}{\pi} t + \int_0^{\pi} G(t, s) [f(s) - bsen v(s)] ds,$$

éste queda bien definido.

Si se prueba que T tiene un punto fijo, dicho punto será solución del problema de valor inicial (3.1). Para ver esto, se debe verificar que T es una contracción.

Dadas $v, \overline{v} \in C[0, \pi]$,

$$\left\| Tv(s) - T\overline{v}(s) \right\| = \left| \int_0^{\pi} bG(t,s) [sen \, \overline{v}(s) - sen \, v(s)] \, ds \right|$$

$$\leq |b| \int_0^{\pi} |G(t,s)| |sen v(s) - sen \overline{v}(s)| ds$$

$$\leq |b| |G| \int_0^{\pi} |sen v(s) - sen \overline{v}(s)| ds$$

$$\leq |b| |G|_{\infty} \int_0^{\pi} |v(s) - \overline{v}(s)| ds \leq |b| |G|_{\infty} \pi ||v - \overline{v}||_{\infty}$$

Luego,

$$||Tv - T\overline{v}||_{\infty} \le |b|||G||_{\infty} \pi ||v - \overline{v}||_{\infty}$$

Por lo tanto, si

$$0 < |b| < \frac{1}{\|G\|_{\infty} \pi}$$

T es una contracción, entonces tiene un único punto fijo.

En definitiva, el problema (3.1) tiene solución única para cualquier valor de b tal que

$$|b| < \frac{1}{\|G\| \ \pi}$$

4. CONCLUSIONES

Dentro de los métodos topológicos, los teoremas de punto fijo se han aplicado a la resolución de diversas ecuaciones no lineales [2], [3]. En este artículo se

demostró utilizando un teorema de punto fijo la existencia y unicidad de solución (bajo ciertas hipótesis) de la ecuación general que modela el problema del péndulo forzado sin fricción.

Utilizando el teorema (2.1) y algunas definiciones previas, se probó que el operador T definido para el problema (3.2) tenía un punto fijo, el cual resolvió el problema de Dirichlet planteado como hipótesis.

5. AGRADECIMIENTOS

Los autores agradecen el apoyo y las sugerencias recibidas por el Doctor Pablo Amster de la Universidad de Buenos Aires (Argentina) para la realización de este artículo.

6. BIBLIOGRAFIA

- [1] CÁRDENAS, P.P. Resolución de ecuaciones diferenciales no lineales por métodos topológicos. Tesis de Maestría en Matemáticas. Universidad Tecnológica de Pereira – Universidad de Buenos Aires (Argentina). 2004
- [2] AMSTER, P.G. Resolution of Semilinear Equations by Fixed Point Methods. Bulletin of the Belgian Mathematical Society. Simon Stevin.
- [3] AMSTER, P, Pinnau, R., Large Convergent Iterative Schemes for a Nonisentropic Hydrodynamic Model for Semiconductors. ZAMM (Zeitschrift für Angewandte Mathematik und Mechanik) Vol 82-8 (2002) 559-566.
- [4] CONWAY J. A course in Functional Analysis. Springer Verlag, New York, 1985.