
Scientia et Technica Año XIII, No 34, Mayo de3 2007. Universidad Tecnológica de Pereira. ISSN 0122-1701 387

Fecha de Recepción: 31 de agosto de 2006
Fecha de Aceptación: 12 de Febrero de 2007

MULTIAGENT SYSTEM FOR SOFTWARE MONITORING AND USERS’ ACTIVITIES IN
A NETWORK EQUIPMENT

RESUMEN
This article presents a multiagent system (MAS) applicable to software
monitoring and to the activities carried out by the users on the equipment of a
network. The concept of distribution and on the use of mobility; the latter being
an agents’ property which provides a wide range of alternatives to solve or do
tasks at the exact place where they are needed. The development of a MAS is
based on a GAIA methodology and AUML language.

KEYWORDS: Agents, MAS, software monitoring, mobility, GAIA

ABSTRACT
Este artículo presenta un sistema multiagente (SMA) que permite monitorear
las actividades realizadas por los usuarios en los equipos de una red de área
local. El concepto de distribución y el uso de la movilidad, son propiedades de
los agentes que proporcionan una amplia serie de alternativas para solucionar o
hacer tareas en el lugar exacto donde se requieren. Para el desarrollo de este
SMA se utilizó la metodología GAIA y lenguaje AUML.

PALABRAS CLAVES: Agentes, SMA, Software de monitoreo, movilidad,
metodología GAIA

 OSCAR H. FRANCO
Ingeniero de Sistemas, M.Sc
Docente Investigador
Universidad Autónoma de
 Manizales
oscarhf@autonoma.edu.co

LUIS F. CASTILLO
Ingeniero de Sistemas, Ph.D. (c).
Docente Investigador
Universidad Autónoma de
 Manizales.
lfcastil@autonoma.edu.co

JUAN M. CORCHADO
Ingeniero Informático, Ph.D.
Profesor titular
Universidad de Salamanca
corchado@usal.es

CARLOS ANDRES LOPEZ
Ingeniero en Computación
Universidad Autónoma Manizales
andresbox@gmail.com

1. INTRODUCTION

The Multiagent system (MAS) paradigm is based upon
the idea on overcoming the restrictions inherent to any
intelligent system, be it natural or artificial, thus
generating associations of simple systems so that they
can share knowledge and capabilities in the same way as
people overcome their individual restrictions by
constituting societies. Each of these simple systems that
is grouped would constitute and agent, and the
community, globally considered, would be a multiagent
system [1]. A description of the set of properties
displayed by a MAS can be found in the technical report
prepared by Iglesias [2], which states that a MAS must
allow as, a minimum, the cooperation and
communication among agents. As proposed by García
and Pavón [3] a wide series of real applications in which
the use of agent systems may facilitate widely the design
and development efforts can be numbered.

In this article, emphasis will be made on the concept of
distribution and on the use of mobility; the latter being an
agents’ property which provides a wide range of
alternatives to solve or do tasks at the exact place where
they are needed. This contributes to the distribution of
processing times and to the construction of more natural,
or at least closer- to-real-life computing solutions.
Specifically in this case of study, mobility is applied to

“visit” network equipment and carry out the programmed
monitoring, with the help of a Windows service.

One of the major problems in the development of an
architecture based on multiagent systems is that there are
currently no clear standards or well-developed
methodologies for defining the steps of analysis and
design that need to be taken. There are at present a
number of methodologies: Gaia [4], AUML [5,6],
Ingenias [7], Tropos [8], Message [9]. For this study, we
have taken GAIA for our Multiagent System. GAIA is a
simple methodology that allows us to carry out a
preliminary analysis and design with which to confront
the problem at a general level. The great advantage is that
we can carry out a rapid, broad study. We are able to
obtain a generalized vision of the problem in terms of
organization, which helps enormously in the
development of such a research project.

2. CONTENT

The problem of monitoring applications in a computer
and the applied MAS will be explained in the following
section. The implementation of the case with Distributed
JADE will be explained in the fourth section, and the
results from the execution of the System will be
presented in the conclusions.

 Scientia et Technica Año XIII, No 34, Mayo de 2007. Universidad Tecnológica de Pereira

388

3. STUDY CASE AND MAS

It is very important to monitor the equipment that makes
up a network, the software that has been installed in each
computer and its frequency of use when managing the
resources of a computer network. Although this could be
restricted with permissions assigned to the users with
reference to the installation and execution of programs,
and thanks to social hacking, the agents may become an
interesting tool that can be used to monitor, in a
distributed manner and thanks to their mobility, the
management of the computer network of an enterprise.
To meet this need, agents were used according to their
distributed nature and their characteristic mobility, which
was well-documented but scarcely implemented in the
MAS due to security aspects.

An organizational design that favors the feasibility of the
programming, retrieval and consolidation of logs is then
presented. This structure consists of an agent-user that
represents the real user in the system, and administrator
that facilitates the capturing, updating and consultation of
the persistant data, a coordinator that controls the start,
collection, ending and analyses of logs, a agent-visitor
that goes to every computer and executes the procedures
necessary to generate the information required in every
monitoring. This step is carried out with the help of a
Windows service and an agent-auditor that analyzes the
information that is retrieved and triggers some warnings
which, finally, allow the real users to interact with the
system, to detect when an aspect to be monitored must be
revised

Figure 1. GAIA Familiarity Model

With the schema shown above (Figure 1), an effective
solution combining mobility and distribution of
multiagent systems was provided. Thus, the design of the
system turns into the construction of a team work (as we
know it in real life) where every member has some
specific functions which contribute to the achievement of
the aim. The implementation process is described below.

4. METHODOLOGY

Due to the special characteristics of the multiagent
systems, the analysis and design of the project were
achieved by using GAIA methodology and the AUML
language. The latter was used due to the fact that GAIA
does not generate a design concrete enough to be
implemented directly.

4.1 Gaia

GAIA was developed by Woolridge, Jennings and Kinny
in 2000 and consists basically of two phases (Figure 3):
an analysis and a design one. These authors state that
”GAIA centers itself around the idea that the construction
of agent-based systems constitutes an organizational
design process” [4].

Figure 2. GAIA PHASES

The analysis phase deals with the comprehension of the
system and its structure. GAIA systems differentiate from
the following models:

Interaction model: Dependence and relationships in a
role group are defined.

Scientia et Technica Año XIII, No 34, Mayo de 2007. Universidad Tecnológica de Pereira 389

Role Model: After identifying the system roles and
having a clearer idea about the interactions that take
place among them, this phase aims at consolidating a
thoroughly elaborated model where each role is
documented.

The GAIA design phase consists of three models: the
agent model that identifies the types of models included
in the system and their corresponding instances; the
service model that identifies the services required for the
agents’ roles, and, finally, the familiarity model that
stands for the links existing among the agents that
structure the system.

4.2 Auml

AUML language is of importance to complete and refine
the outcome from GAIA, which is a little concrete to be
implemented directly. This language centers around the
use of already existing AUML development tools, thus
adapting them to the agents’ specific characteristics. An
Odell’s proposal suggesting the representation of the
three layers known as AIP (Agent Interactive Protocol)
was used. According to Odell “AIP describes
communication patterns that include: a permitted
sequence of messages among agents with different roles;
obligations about the contents of the messages; and
semantics consistent with the communication acts within
a communication pattern.” [5]

Protocol layer: Communication protocols are represented
in this layer.

Interaction layer: The interactions among agents are
represented here. This layer may use two types of
diagrams, each one with different characteristics.
Accordingly, it is necessary to select the protocol that
best adapts itself to the interaction to be modeled; these
diagrams may be sequence or collaboration ones. Due to
the distribution characteristics, collaboration diagrams
were used in this work (Figure 3).

Figure 3. Colaboration Diagram

5. STUDY CASE IMPLEMENTATION

A four-tier architecture was used in the implementation
of the system:

1. A layer of processing agents: the agents and
their functionality were defined.

2. A presentation layer: in charge of managing the
interface and interaction of the system users and
the MAS.

3. A data layer: to administer the database and the
routines to have access to the data.

4. A client layer: a Windows service to be installed
in every computer to achieve the monitoring.

Figure 4. Four-tier architecture

JADE [10] was used in the implementation of the system
to administer the agents. This platform allows the

 Scientia et Technica Año XIII, No 34, Mayo de 2007. Universidad Tecnológica de Pereira

390

management and follow-up of the MAS agents; the
database was developed in Mysql, the Windows service
with .NET and the presentation layer (system interface)
was made in JAVA. The system basically functions as
follows: it provides an interface that allows the storage
and updating of the data necessary to program monitoring
such as organizations, groups, equipment, software,
warning logs, etc. See Figure 5.

Figure 5. Presentation layer

Once a monitoring with the specifications on what is to
be done in the end computers is programmed, an agent
goes to the computer and installs Windows services. The
Windows service generates text files (Logs) of
configured information and, once the monitoring is
achieved, the agent-visitor retrieves and stores the
information generated, then, an agent-auditor analyzes
this information and presents the results from it (Figure
6).

Figure 6: Results from monitoring

An important feature of the system is the customization
of the information to be monitored and of the warnings
that are to be revised in each monitoring. As a matter of
fact, it is possible to program monitoring for particular
cases and evaluate them according to the conditions and
the time desired. As it is shown in the main interface
(Figure 5), the user is constantly notified about his
monitoring. This is achieved by displaying a list of what
he has programmed in its present status, and this list also

shows him every thing that happens with his monitoring
in a message form: whether the installation was
successful, there was a failure in any computer or there
was a monitoring that violated any condition on the
associated risk. From this explanation, the interpretation
that the most relevant characteristic was the agents’
mobility was drawn. When referring to JADE mobility, it
is necessary to take into account that it implies a
serialization of part of the software (in this case the
agent-visitor) in a specific place (the server), the sending
of the data through a canal (LAN) and the de-
serialization in another destination place (PC-Objective).
It is also important to make clear that the aim is not to
instantiate a new object in another place, but to transfer
that software piece with code and data status. This means
that if the agent-visitor had declared a variable X=50 at
destination A, when variable X is displaced to a
destination B, it will keep its value 50 and so the other
instances and variables that the class may contain.

6. PROOF DOCUMENTATION

The system described above was tested in the computer
network at Autonoma University in Manizales,
Colombia, and various characteristics of its functioning
were analyzed. The number of computers being
monitored concurrently and on which relevant
information was consulted and updated was taken into
account. The results were the following among others:

Figure 7. Results

The response time for updatings range from 0.5 to 1.5
seconds; in the case of consultations it depends on the
data to be retrieved. The slowest consultation takes 3
seconds approximately. The performance of the server is
not affected when the agents are cloned and the
monitoring data are received. The performance of the
PCs under analysis decreases when the files are
initialized and verified, this process being narrowly
linked to the amount of files in the computer and on its
physical capacity.

Scientia et Technica Año XIII, No 34, Mayo de 2007. Universidad Tecnológica de Pereira 391

7. CONCLUSIONS

The development of multiagent systems, given their
distributed nature, favors the appearance of
characteristics such as: location transparency, access
transparency, tolerance, concurrence, replication and
mobility. It is important to implement this kind of
systems in organizations where a high degree of control
on the technological platform owned is required. Thus, a
useful tool is provided for the management of system
administrators and computing auditing groups in their
control activities, and an information-providing
application to the organizations with reference to the
events in their network components.

GAIA is a methodology through which it is possible to
make the analysis and design of a multiagent system, but
it displays some weaknesses when the multiagent system
interacts with other type of components. Accordingly, big
lacks to model the parts of the system, which do not
function as agents, were found, such as the Windows
service. It was then necessary to turn to diagrams to
model these aspects in an approximately effective way.

The use of AUML with sequence, activity and
collaboration diagrams allowed to increase the detail
level in the design phase. This aspect favored the
implementation of the agents’ behaviors with JADE.

The multiagent systems may be used to solve different
types of problems, especially those involving distributed
systems, which process a great deal of information and
facilitate a collaborative solution. However, before they
are applied to the solution of a problem, the requirements
and characteristics of each specific case must analyzed in
detail.

8. ACKNOWLEDGEMENTS
Mr. Oskar Llano because of the translation of the article

9. BIBLIOGRAPHY

[1] Wooldridge, M. The Logical Modelling of
Computational Multi-Agent Systems. Dissertation,
Department of Computation, UMIST, Manchester, UK,
October 1992.

[2] Iglesias C.A. Definición de una metodología para el
desarrollo de sistemas multiagente. 1998. Tesis doctoral.
Universidad Politécnica de Madrid, E.T.S.I.
Telecomunicación, Departamento Ingeniería de Sistemas
telemáticos. P. 193-202.

[3] Garcia Alonso, D. y Pavón Maestras J. Introducción
al estándar FIPA. En: Informe técnico UCM-DSIP 98-00.
Departamento de Sistemas informáticos y programación.
Universidad Complutense de Madrid. 2000.

[4] Wooldridge, M. and Jennings, N. R. and Kinny, D.:
The Gaia Methodology for Agent-Oriented Analysis and
Design. Journal of Autonomous Agents and Multi-Agent
Systems, 3 (3). pp. 285-312. (2000)

[5] Bauer, B. and Huget, M. P.: FIPA Modeling: Agent
Class Diagrams (2003)

[6] Odell, J. and Huget, M. P.: FIPA Modeling:
Interaction Diagrams (2003).

[7] Gomez, J. and Fuentes, R.: Agent oriented software
engineering with INGENIAS. In Proceedings of 4th
Iberoamerican Workshop on Multi-Agent Systems
(Iberagents’02), Malaga, Spain. (2002)

[8] Mylopoulos, J., Kolp, M., and Castro, J.: UML for
agent-oriented software development: The TROPOS
proposal. In Proc. of the 4th Int. Conf. on the Unified
Modeling Language UML’01, Toronto, Canada. (2001)

[9] EURESCOM MESSAGE: Methodology for
engineering systems of software agents. Technical report
P907-TI1, EURESCOM (2001)

[10] http://jabe.tilab.com june 26, 2006.

10. CONSULT

[1] BATES, J., Bryan Loyall, A., and Scott Reilly, W. An
architecture for action, emotion, and social behaviour.
Technical Report CMU–CS–92–144, School of
Computer Science, Carnegie-Mellon University,
Pittsburgh, PA.1992

[2] BATES, J., Bryan Loyall, A., and Scott Reilly, W.
Integrating reactivity, goals, and emotion in a broad
agent. Technical Report CMU–CS–92–142, School of
Computer Science, Carnegie-Mellon University,
Pittsburgh, PA.1992

[3] SHOHAM, Y. Agent-oriented programming. Artificial
Intelligence, 60(1):51–92.1993

[4] CORCHADO J.M., Corchado E. y Pellicer M.A.: Design of
cooperative agents for mobile devices. Proceedings of the
International Conference on Cooperative Design, Visualization
and Engineering - CDVE2004. Luo Y. (Ed.) LNCS 3190,
Springer Verlag. ISSN 0302-9743. ISBN 3-540-23149-8 pp.
205-212. (2004)

[5] CORCHADO J. M., Pavón J., Corchado E. and Castillo L.
F. : Development of CBR-BDI Agents: A Tourist Guide
Application. 7th European Conference on Case-based
Reasoning 2004. LNCS 3155, Springer Verlag. pp. 547-559
(2005)

