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Resumen— Una conducción de fluido se inyecta continuamente o 

expulsada a través de un par de paredes porosas paralelas y se 
escapa en ambas direcciones a lo largo del canal. El flujo forma 
un punto de estancamiento en el centro y la emanación está 

restringido por un campo magnético. Un análisis teórico de las 
soluciones de estado estacionario de las ecuaciones MHD en el 
caso incompresible se da como una función de tres parámetros: 
el número de Reynolds Re, el número de Reynolds magnético Rm 
y Alfvenic número de Mach MA para algunos de los límites 

asintóticos significativas. 

 
Palabras clave— Conducción de fluidos, expulsión, inyección, 

paredes porosas paralelas 
 

Abstract—A conducting fluid is continuously injected or ejected 
through a pair of parallel porous walls and it escapes in both 

directions along the channel. The flow forms a stagnation point 
at the center and the effluence is restricted by a magnetic field. A 
theoretical analysis of steady state solutions of the MHD 
equations in the incompressible case is given as a function of 

three parameters: the Reynolds number Re, the magnetic 
Reynolds number Rm and Alfvenic Mach number MA for some 
of significant asymptotic limits. 
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I. INTRODUCTION 

 

The bidimensional problem of a viscous and incompressible 

fluid in a porous channel with a stagnation point in the center 

was initially studied by Berman [1] whose work was 

motivated to give a model that explained the separation of 

uranium from U238 to U235 by gaseous diffusion. The uranium 

is previously turned to the gas UF6, which has appropriate 

characteristics for its manipulation. In this pioneering work 

the problem of the stationary case was solved, using similar 

solutions to reduce from the Navier-Stokes equation to a 

differential equation of fourth degree, with a pair of border 

conditions in each wall. Berman found analytical solutions for 

the asymptotic situation of low Reynolds numbers in the case 

of suction in the walls. Later authors have studied different 

physical situations from this problem, Sellars [2], Yuang [3], 

Proudman [4], Shrestha [5], Terril [6], Brady and Acrivos [7], 

Brady [8], Robinson [9], Zaturska et. al. [10], Watson et al 

[11], Cox [12], Banks [13, 14] that in general has treated, for 

example the cases of symmetrical, asymmetric flows, walls 

with acceleration, different speeds from suction or injection in 

the walls superior and inferior. 

 

In this work a conducting fluid which is continuously injected 

or ejected through a pair of parallel porous walls and which 

escapes in both directions along the channel is study. 

 

II. BASIC EQUATIONS OF THE 

MAGNETOHYDRODYNAMICS PROBLEM 

 

The Navier-Stokes and the Ohm law, equations could be 

written in a reduced form as: 

 

[ ] [ ] 0,
4

1
,)( 2222 =∇−∇−∇∇− ψψ

πρ
ξξξν∂ t  (1) 

[ ] zmt cE=−∇− ψξψν∂ ,)( 2
   (2) 

 

In the last equations, the velocity and the magnetic field are 

given by the following equations: 
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ξ∂ yxV =  ,  ξ∂ xyV −=  ,  ψ∂ yxB =  ,  ψ∂ xyB −=   (3) 

 

The bracket [ ]
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∂

∂

∂

∂
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defines the Jacobian of 

f  and g  functions, additionally 
πσ

ν
4

c
m =  is the magnetic 

diffusion,−∇2ξ is the z  component of the  vorticity 

Vw ×∇= , ψ  is the z  component of the potential vector A  

( B=×∇ A  ), which means, the Jz  component can be written 

in terms of the ψ  function like zJ
π

ψ
4

12 =∇− . The brackets

[ ]ξξ 2,∇ and [ ]ψξ , represent the convection transport terms of 

-ωz  and ψz , respectively. Additionally, the bracket [ ]ψψ ,2∇

represents the curl z component of the Lorentz force. We 

Suppose that there is an invariance of the translation in z, this 

is, for example, 0=
x

Ex

∂

∂
 and 

∂

∂

E

y

y
= 0 . Besides 

E E tz z= ( ) , just depends on the time. In general the 

electrical field can be described by 
tc

tz
∂

∂
ϕ

A
EE

1
)( −+−∇= , 

therefore it could be found a potential ϕ
)

, such that 

.)(),,( ztEtyx += ϕϕ
)

 We will study a model where the lateral 

walls, which are supposed to be distant in the z direction, 

cannot be charged electrically, then the z - component of the 

electrical field Ez  is zero. This fact will permit us to see 

ahead, the use of similar solutions for uncoupling the 

equations (1) and (2). It can be supposed as well that those 

walls are conductive but they are in short-circuiting for a lab 

model (see fig. 1). Finally, these walls could be in the infinite, 

this last case is presented for instance in an astrophysic model. 

From above it can be deduced that in a tree-dimensional model 

the boundary conditions in z  are related to the Ez  electrical 

field. 

 

 
 

Figure 1. A conductor fluid injected through the walls. The magnetic 

field is represented without interaction between the field and the 

fluid.  

 

 

The equations system (1) and (2) expounded previously, 

admits in general similar solutions of the form: 

 

 ),,(),,( ηηξ tygtyxf += ,  (4) 

 

 ),,(),,( ηηψ tyqtyxp += ,  (5) 

 

Where ɳ represents all parameters involved, in this case, the 

viscosity, the magnetic diffusivity and external magnetic field. 

Replacing the equations (4) and (5) in the equations (1) and 

(2),the following dimensionless equations system is obtained 

in the suction and injection cases of a fluid between two 

parallel and porous plates with an external magnetic field: 

 

( ) ( )
yyyy

A
yyyyyyyy

e

tyy ppp
M

ffff
R

f 2

2

2 )(
1

)(
1

−−−=−    (6) 

pffpp
R

p yyyy

m

t −=−
1

             (7) 

 

Re  
is the Reynolds number, Rm is the magnetic Reynolds 

number, Ha  is the Hartmann number and AM  is the alfvenic 

Mach number. Notice that now ),,,,( Ame MRRtyff =  and

),,,,( Ame MRRtypp = . GivenRe, Rm  and M A, the system 

given by the equations (6) and (7) could be solved numeric or 

analytically in the asymptotic situation that we will study later. 

Sometimes, when the shooting technique is used in order to 

solve cases for the equations system given previously, the 

problem is invested and the parameters employed to make the 

calculations are R
e, Rm

 y M
A
. Notice that if p = 0  the problem 

decreases to the pure fluidness case. The general problem so 

expounded is quiet complex from a mathematical point of 

view. We will study the case in which a conductor, 

incompressible and viscous flow, goes in or out through a pair 

of parallel infinite perforated walls with the same suction rate 

or with injection in both walls (separated by a distance of 2 0h ). 

The flow that interacts with a magnetic field is basically 

perpendicular to the walls in the case of being conductors. If 

the walls are dielectric the magnetic field can have x and y 

components in the boundary. This magnetic field is modified 

by the conductor flow movement, as it is shown in figure 2. 

 

Vy

By

Vy

By
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Figure 2. Lines speed and the field in the case where it is considered 

that interaction with the magnetic field exists. This case comes when 

injection of flow through the walls exists. 

 

 

The magnetic field B = ( , , )B Bx y 0  and the speed 

V = ( , , )V Vx y 0  could be obtained then of the following 

form: 

 

V xfx y x= =∂ ξ   V fy x= − = −∂ ξ  (8) 

B xpx y y= =∂ ψ  B py x= − = −∂ ψ  (9) 

 

III. BOUNDARY CONDITIONS 

 

For the case of a fluid that enters or leaves for a pair of 

perforate and parallels walls, in presence of a magnetic field 

the initial conditions, are: f y f y( , , ) ( , )0 η η=

= +f y f t0 1( , ) ( )η , here the temporary part f
1
(t )and

p y p y p y p t( , , ) ( , ) ( , ) ( )0 0η η η= = + , here p
1
(t) are small 

interferences of f
0
 y p

0
, that they in turn are the solutions of 

the stationary case obtained from the equations (1) and (2). 

Additionally η  is determined by a fixed parameters set of the 

system v0, v0m and B0 which correspond to the values in the 

cinematic and magnetic viscosities and in the magnetic fields 

respectively. Here it is convenient to define the following 

operators: 

 

 [ ]Hf f f f fy y= − −( ), ( ), ( ), ( )1 1 1 1  (10) 

  

 [ ]H f f f f fS y yy= ( ), ( ), ( ), ( )1 1 0 0  (11) 

  

 [ ]H f f f f fA y y yyy= ( ), ( ), ( ), ( )1 1 0 0  (12) 

  

 [ ]Kp p p= −( ), ( )1 1    (13) 

 

 [ ]K p p pyβ = ( ), ( )1 1    (14) 

 

The boundary condition for the velocity, the condition over f , 

in the case of suction in the walls is [ ]Hf = −1 0 1 0, , , and 

for the injection case [ ]Hf = −1 0 1 0, , , .  

 

Since that in our numerical calculus we have integrated the 

equations (6) and (7) between the half of the channel width (

y = 0) and in the wall ( y = 1), we define the operators HS 

and HA which correspond to the cases of symmetric solutions, 

[ ]HS = ±1 0 0 0, , , , for injection (+) and suction (-)) and 

antisymmetric ( [ ]HA = ±1 0 0 0, , , for injection (+) and 

suction (-), respectively. Note that if f  represents a 

symmetric flow then this should be an odd function so that

f ( )0 0= , and therefore the origin is always a stagnation 

point. 

 

The boundary conditions for the magnetic field, the conditions 

over p, depend on the walls and flow conductor character. 

Nevertheless the following condition for both suction and 

injection cases, should be generally satisfied: 

 

[ ]K pA = −1,β     (15) 

 

If the walls are conductors the constant β  is adjusted 

depending on the characteristic parameters of the problem. 

For example, in the low viscosity and high conductivity 

regimes β = 0  is taken. Since in this case the flow drags the 

magnetic field lines so that they become parallel and therefore 

the magnetic field and the velocity satisfy the same boundary 

condition over the wall. This last conditionβ = 0 , is valid for 

all the conductor walls. If the walls are dielectric then the 

magnetic field between them, is supposed to be originated by 

a pair of external coils that generate an external magnetic field 

in the form:  

 

B cxx
e =  B cy by

e = − +    (16) 

 

It means that the function ψ  that represents the magnetic field 

flow (equation (2)) is now given by the expression: 

 

ψext
bx cxy= − +    (17) 

 

Providing that the magnetic field in the walls can take any 

value, the boundary conditions for the magnetic field inside 

the walls that permit the couple with the external magnetic 

field, can be briefly written in the following way: 

 

[ ]K p p py yα = ( ), ( )1 0    (18) 

y0

Vy B yy0

Vy B y
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If Kα =[c,0], the symmetric case of dielectric walls is 

obtained, but if Kα=[0,0], then the walls will be metallic. 

Since in this work we just present the symmetric flow case, 

the condition f ( )± =1 1m
 
 is fixed for the flow and for the 

magnetic field p( )± = −1 1  and for the numerical case, what 

means to take Re > 0 and Rm > 0 for the suction case while 

for the injection case Re < 0 y Rm < 0, without varying the 

boundary conditions. Additionally when using the above 

convention, the time changes of sign in the injection case. It is 

clear that the negative time and negative Reynolds number 

definitions do not have any physical interpretation, it is just a 

mathematic artifice used in this kind of problems in order to 

facilitate the numerical calculus. In some cases it is 

convenient to use an integration of the equation (6). For the 

stationary case the equations system given in the equations (6) 

and (7) is described by the following equations system: 

 

  

( ) ( )− = + − − −
1 1

2

2

2

R
f C ff f

M
pp p

e

yyy yy y

A

yy y( ) ( )

  

(19) 

− = −
1

R
p fp f p

m

yy y y

               

(20) 

 

The constant C of integration is determined starting from the 

values in the boundary, that in stationary case of conductor 

walls and of injection of flowing in the walls, C is given by 

the equation: 

 

( ) ( )C
R

f f
M

p
e

yyy yy

A

yy

y

= − − + −








=

1 1
2

2

1

β

 

(21) 

 

This integration constant C, on the other hand is directly 

related with the pressures gradient according to the x axis 

through the expression:  

 

 ( / /4 )∂ ∂ = − − ′p x ax xP
2 π   (22) 

 

What is to say the pressures gradient depends not only on the 

x magnetic field component but on the position according to 

the x axes. 

 

IV. ASYMPTOTIC APPROXIMATIONS RE <<1 AND RM 

<<1. 

 

In the injection case with low Reynolds numbers, the 

magnetic field lines are now rigid just by a small perturbation 

which is caused by the flow movement, this one at the same 

time is very viscous for this limit (Re<<1). Such magnetic 

field can be written in the following way: 

 

10 ppp += ,      (23) 

 

where  p0 is the field value that we assumed as constant and 

by simplification reasons can be taken the same as the unit. 

On the other hand, p1 is a small perturbation which as it was 

previously said, it is caused by the fluid movement. Thus the 

equations (19) and (20) previously linearized, can be written 

in the following way: (see fig. 2), 

 

′′−=′′′− 102

11
pp

M
Cf

R
Ae

                  (24) 

 

01

1
pfp

Rm

′=′′                     (25) 

 

In the expressions above the second order terms have been 

suppressed, that means, we have taken the first two terms of 

the expansion p = 1+Rmp1+.... 

 

On the other side, the term 1/Rm is very big, but p1
"
 is very 

small, so the equation (25) is valid. When replacing the 

equation (24) the following differential equation is obtained: 

 

′+−=′′′ fpHCRf ae

2

0

2
      (26) 

 

This equation at the same time has as solution (with p0=1): 

 

( )
( )

f y
Senh H y

H Cosh H

Tanh H

H

a

a a

a

a

= −








 −









 1

( )
    (27) 

 

and consequently replacing the equation (25) the following  

expression for p1  is obtained: 

 

( )
p

R H y Cosh H y H Cosh H

H Tanh H
D

m a a a a

a a

1

2 2
= −

−

−
+

(( ) ( ))

( )
   

(28) 

 

Here, Ha  is the Hartmann number defined previously. Also the 

integration constant D is calculated keeping in mind that the wall 

interference should be null, and then it remains defined like: 

 

D
R H H

H Tanh H

m a a

a a

=
−

−

( )

( )

2 1
       (29) 

 

Figure 3 shows the velocity component behavior according to 

the x axis direction for different values of the Hartmann 

number. Note that when the Hartmann number grows , that 

means, the magnetic field becomes stronger (MA<<1), the 

fluid behavior is similar to the Hartmann flow where the 

velocity is constant at the center of the channel and it strongly 

varies when is near the walls until diminishing to zero exactly 

over the wall.  
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Figure 3. Speed profile and their behavior for several values of the 

Hartmann number. It is observed that when Ha>>1 appears a limit 

layer in the wall. 

 

 

On the other hand, taking into account the boundary condition 

in the wall f(y=1) =1, it is found that the constant C is related 

to the other constants through the following formula: 

 

( )









−
=

aae

a

HHR

H
C

tanh

1
3

   (30) 

 

Figure 4 shows the relation between the constants C, Ha and 

Re given in the equation (30). Additionally if Ha >> 1 (for 

example, MA<< (ReRm)
 (1/2)

 <<1), it implies that 

C H Ra e≈ 2 / , so that it can be deduced that it should exist a 

strong gradient that moves the fluid outside. The magnetic 

field roughness controls then the fluid movement, avoiding it 

to leave. On the other hand if Ha << 1, the magnetic field 

lines are "less rigid " and in this case the condition CRe ≈ 3 

is satisfied, thus the viscous effects are now the ones that 

control the fluid movement. 

 

 
Figure 4. Relation between C, Ha and Re  in the asymptotic case of 

Rm<<1 and Re<<1. 

 

On the other hand, figure 5 shows the current lines and the 

magnetic field obtained by the basic equations numerical 

integration. Note that the rigidity of the magnetic field lines, 

as well as the component Bx in the wall are not annulled. In 

this graphic it is difficult to see, due to the scale that it was 

built with. 

 

Figure 6 illustrates the speed and field profiles, where the 

appearance of the limit layer before mentioned is shown. 

Similarly, how it was made in the previous asymptotic case, 

the solutions obtained upon being integrated numerically the 

equations (19) and (20) for the Runge-Kutta method, for the 

values Re = 01. , Rm = 01. , MA = 0 3.  and C = 313254. , 

they coincide with the obtained through the equation (30), 

where the value that is obtained is C = 313326. .  So it is 

shown again a good agreement between the asymptotic results 

and found numerals upon integrating the complete equations 

system. On the other hand, in the numeric integration that was 

made for several Reynolds number values, they do not show 

appreciable variations, for both profiles of the speed and the 

magnetic field, in the range 0.1≤ Re ≤ 30. 
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Figure 5. For the asymptotic case, Rm<<1 y Re<<1, the field lines 

for the speed and the magnetic field is shown. In this case 

Rm=Re=0.1, MA=0.3 and C=31.3254. 

 

 
Figure 6. For the case Rm<<1 and Re<<1, the profile of the speed 

and the magnetic field is shown. It is observed it that the field does is 

not null in the wall. 
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