Modelo para un sistema multi estado reparable con tasas de reparación y fallas variables en el tiempo utilizando modelos de dinámica de sistemas equivalente

Palabras clave: Reliability, Systems Dynamics, Failure analysis

Resumen

This paper treats with the reliability assessment of a Repairable Multi-State System (RMSS) by means of a Nonhomogeneous Continuous-Time Markov Chain (NH-CTMC). A RMSS run on different operating conditions that may be considered acceptable or unacceptable according to a defined demand level. In these cases, the commonly used technique is Homogeneous Continuous-Time Markov Chain (H-CTMC), since its solution is mathematically tractable. However, the H-CMTC involve that the time between state transitions is exponentially distributed, and the failure and repair rates are constants. It's certainly not true if the system components age with the operation or if the repair activities depend on the instant of time when the failure occurred. In these cases, the failure and repair rates are time-varying and the NH-CTMC is needed to be considered. Nevertheless, for these models the analytical solution may not exist and the use of others techniques is required. This paper proposes the use of an Equivalent Systems Dynamics Model (ESDM) to model a NH-CTMC. A ESDM represent the Markov Model (MM) by means of the language and the tools of the Systems Dynamics (SD), and the results are obtained by simulation. As an example, an RMSS with three components, failure rates associated with the Weibull distribution and repair rates associated with the Log-logistic distribution is developed. This example serves to identify the advantages and disadvantages of a ESDM to make model a RMSS and evaluate some reliability measures.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Marcela Narváez Velasco, Iteria SAS

nacida el 23 de diciembre en Cali, Colombia. Ingeniera Industrial egresada de la Universidad del Valle, Santiago de Cali, Colombia, en 2012. Magister en Finanzas de la Universidad Icesi, Santiago de Cali Colombia, en 2018.

Entre los años 2012-2016, desempeñó cargos de coordinación en procesos de compras y abastecimiento de las empresas Compañía Internacional de Alimentos S.A.S y Fleischmann Foods SA. Actualmente es consultora funcional de finanzas en proyectos de implementación y soporte de aplicaciones Oracle en Iteria SAS.

Juan Carlos Osorio Gómez, Universidad del valle

nacido el 20 de septiembre de 1975 en Buga, Valle del Cauca, Colombia. Ingeniero Industrial, Especialista en Logística, Magister en Ingeniería Industrial, Doctor en Ingeniería Industrial de la Universidad del Valle, Santiago de Cali, Valle del Cauca, Colombia. Actualmente Profesor titular de la Escuela de Ingeniería Industrial de la Universidad del Valle.

Citas

S. Distefano and A. Puliafito, "Dependability modeling and analysis in dynamic systems." 2007 IEEE International Parallel and Distributed Processing Symposium, IEE., pp. 1-8, 2007. DOI: 10.1109/IPDPS.2007.370601

https://doi.org/10.1109/IPDPS.2007.370601

S. Distefano, "Reliability and dependability modeling and analysis of dynamic aspects in complex systems," 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, IEE., pp. 43 - 48, 2009. DOI: 10.1109/DASC.2009.145

https://doi.org/10.1109/DASC.2009.145

A. N. Ajah et al, "Hierarchical markov reliability/availability models for energy & industrial infrastructure systems conceptual design," Computer aided chemical engineering., vol. 21, pp. 1753-1758, 2006. DOI: 10.1016/S1570-7946(06)80301-9

https://doi.org/10.1016/S1570-7946(06)80301-9

P. Pukite and J. Pukite, "Markov modeling for reliability analysis," Wiley-IEEE Press, 1998.

https://doi.org/10.1109/9780470545317

W. Kuo and M. J. Zuo, "Optimal reliability modeling: principles and applications," John Wiley & Sons, 2003.

K. B. Misra, "Maintenance engineering and maintainability: An introduction," Handbook of performability engineering, Springer, London, pp. 755-772, 2008. DOI: 10.1007/978-1-84800-131-2_46

https://doi.org/10.1007/978-1-84800-131-2_46

G. Leviti and A. lisnianski, "A new approach to solving problems of multi‐state system reliability optimization," Quality and reliability engineering international., vol. 17, no. 2, pp. 93-104, 2001. DOI: 10.1002/qre.388

https://doi.org/10.1002/qre.388

M. Xie, Y. S. Dai and K. L. Poh, "Computing system reliability: models and analysis", Springer Science & Business Media., 2004.

I. W. Soro, M. Nourelfath and D. Aït-Kadi. "Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance," Reliability Engineering & System Safety., vol. 95, no. 2, pp. 65-69, 2010. DOI:10.1016/j.ress.2009.08.004

https://doi.org/10.1016/j.ress.2009.08.004

Y. W. Liu and K. C. Kapur, "New models and measures for reliability of multi-state systems," Handbook of performability engineering, Springer, London, pp. 431-445, 2008. DOI:10.1007/978-1-84800-131-2_28

https://doi.org/10.1007/978-1-84800-131-2_28

A. Lisnianski, I. Frenkel and Y. Ding, "Multi-state system reliability analysis and optimization for engineers and industrial managers", Springer Science & Business Media., 2010. DOI:10.1007/978-1-84996-320-6

https://doi.org/10.1007/978-1-84996-320-6

J.L Wang, "Markov-chain based reliability analysis for distributed systems," Computers & Electrical Engineering., vol. 30, no. 3, pp. 183-205, 2004. DOI: 10.1016/j.compeleceng.2002.02.001

https://doi.org/10.1016/j.compeleceng.2002.02.001

Y. A. Ermolin, "Reliability calculation under seasonally varying failure rate," ISA transactions., vol. 46, no. 1, pp. 127-130, 2007. DOI: 10.1016/j.isatra.2006.06.005

https://doi.org/10.1016/j.isatra.2006.06.005

S. M. Ross, "Introduction to Probability Models," California: Elsevier Inc., 2007.

H. C. Tijms, "A first course in stochastic models," John Wiley and sons., 2003. DOI:10.1002/047001363X

https://doi.org/10.1002/047001363X

M. Rausand and A. Hoyland, "Sytem Reliability Methods and Applications," Jhon Wiley & Sons., 2004. DOI:10.1007/978-0-85729-688-7

https://doi.org/10.1007/978-0-85729-688-7

J. V. Bukowski, "Using Markov models to compute probability of failed dangerous when repair times are not exponentially distributed," RAMS'06. Annual Reliability and Maintainability Symposium, IEEE, pp. 273-277, 2006. DOI: 10.1109/RAMS.2006.1677386.

https://doi.org/10.1109/RAMS.2006.1677386

T. Rolski, H. Schmidli, V. Schmidt and J. L. Teugels, "Stochastic processes for insurance and finance," John Wiley & Sons., 1999. DOI:10.1002/9780470317044

https://doi.org/10.1002/9780470317044

M. Arns, P. Buchholz and A. Panchenko, "On the numerical analysis of inhomogeneous continuous-time Markov chains," INFORMS Journal on Computing., vol. 22, no. 3, pp. 416-432, 2010. DOI: 10.1287/ijoc.1090.0357

https://doi.org/10.1287/ijoc.1090.0357

W. J. Stewart, "Probability, Markov chains, queues, and simulation: the mathematical basis of performance modeling," Princeton university press., 2009. DOI: 10.2307/j.ctvcm4gtc

https://doi.org/10.2307/j.ctvcm4gtc

E. S. e Silva and H. R. Gail, "Transient solutions for Markov chains," Computational probability. Springer, Boston, MA, pp. 43-79, 2000. DOI: 10.1007/978-1-4757-4828-4_3

https://doi.org/10.1007/978-1-4757-4828-4_3

D. G. Zill, "Differential equations with applications in modeling," México, D.F: Thomson Editores, S.A., 2006.

J. B. Fonollosa, J. M. Sallán and A. Suñé, "Quantitative methods of industrial organization," Barcelona: Ediciones de la Universidad Politécnica de Catalunya., 2002.

B. S. Dhillon, "Reliability, quality, and safety for engineers," CRC Press, 2004. DOI:10.1002/qre.754

https://doi.org/10.1002/qre.754

X. Bao and L. Cui, "An analysis of availability for series Markov repairable system with neglected or delayed failures," Ieee Transactions on reliability., vol. 59, no. 4, pp. 734-743, 2010. DOI: 10.1109/TR.2010.2055915.

https://doi.org/10.1109/TR.2010.2055915

A. Platis, N. Limnios and M. Le Du, "Dependability analysis of systems modeled by non-homogeneous Markov chains," Reliability Engineering & System Safety., vol. 61, no. 3, pp. 235-249, 1998. DOI:10.1016/S0951-8320(97)00073-2

https://doi.org/10.1016/S0951-8320(97)00073-2

Y. Liu and H. Z. Huang, "Optimal replacement policy for multi-state system under imperfect maintenance," IEEE Transactions on Reliability., vol. 59, no. 3, pp. 483-495, 2010. DOI: 10.1109/TR.2010.2051242.

https://doi.org/10.1109/TR.2010.2051242

Y. Liu and K. K. C. Kapur, "Customer's cumulative experience measures for reliability of non-repairable aging multi-state systems," Quality Technology & Quantitative Management., vol. 4, no. 2, pp. 225-234, 2007. DOI: 10.1080/16843703.2007.11673147

https://doi.org/10.1080/16843703.2007.11673147

A. Lisnianski, I. Frenkel, L. Khvatskin and Y. Ding, "Maintenance contract assessment for aging systems," Quality and Reliability Engineering International., vol. 24, no. 5, pp. 519-531, 2008. DOI: 10.1002/qre.913

https://doi.org/10.1002/qre.913

D. C. Lane, "Should system dynamics be described as a 'hard'or 'deterministic'systems approach," Systems Research and Behavioral Science: The Official Journal of the International Federation for Systems Research., vol. 17, no. 1, pp. 3-22, 2000. DOI:10.1002/(SICI)1099-1743(200001/02)17:1<3::AID-SRES344>3.0.CO;2-7

https://doi.org/10.1002/(SICI)1099-1743(200001/02)17:1<3::AID-SRES344>3.0.CO;2-7

M. Narváez and J. C. Osorio, "Methodology for the modeling of Nonhomogeneous Continuous-Time Markov Chains, using Systems Dynamics," IX Latin American Congress of System Dynamics., 2011.

J. Sterman, "Business dynamics: systems thinking and modeling for a complex world," Irwin McGrawHill, 2000.

J. R. Burns, "Simplified translation of CLDs into SFDs," proceedings of the International Conference of the System Dynamics Society., pp. 1-28, 2001.

A. L. Pugh, "Simulation software and numerical issues," Knowledge for Sustainable Development, An Insight into the Encyclopedia of Life Support Systems. Oxford: UNESCO Publishing - Eolss Publishers, 2009.

Ventana systems Inc. (2002). Vensim® DSS, Professional, Standard, PLE Plus, PLE with Causal Tracing®, Reality Check® y SyntheSimTM. User Guide. Version 5. 1988-2002.

Publicado
2020-09-30
Cómo citar
Narváez VelascoM., & Osorio GómezJ. (2020). Modelo para un sistema multi estado reparable con tasas de reparación y fallas variables en el tiempo utilizando modelos de dinámica de sistemas equivalente. Scientia Et Technica, 25(3), 386-393. https://doi.org/10.22517/23447214.23551
Sección
Industrial