Marco general para la extracción de información y estimación de radiación solar diaria


Vistas(Views): 241 / Descargas(Downloads): 107

Autores/as

DOI:

https://doi.org/10.22517/23447214.24744

Palabras clave:

Análisis por componentes principales, Aprendizaje automático, Energía solar

Resumen

Este articulo presenta un estudio comparativo resultado del diseño y simulación de un sistema de predicción de condiciones climáticas usando modelos de aprendizaje automático, en el cual, se confrontan los resultados obtenidos al usar una base de datos de condiciones ambientales, con otra base de datos generada a partir del tratamiento de los datos mediante el análisis por componentes principales. En la primera fase del estudio, se generan metadatos a través de los subespacios creados con el análisis por componentes principales, una segunda fase consta de elaborar un sistema de predicción de condiciones climáticas usando varios modelos de aprendizaje de máquina, los cuales, usarán como recurso los datos originales y los metadatos generados en la primera fase del estudio, en la fase final del estudio, se comparan ambos resultados con el objetivo de observar el comportamiento de los sistemas de inferencia de la radiación solar. La estrategia de tratamiento de datos propuesta permite extraer información de las bases de datos ambientales facilitando la interpretación y observación como serie temporal de datos, adicionalmente, se logra construir un marco de referencia experimental para la inferencia de la radiación solar usando diferentes técnicas de aprendizaje supervisado sobre las bases de datos generadas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Diego Fernando Muñoz Torres, Fundacion Universitaria Tecnologico Comfenalco

Mi nombre es Diego Fernando Muñoz Torres, soy ingeniero electricista de la Universidad Tecnologica de Pereira, me agradan los temas relacionados con la electronica de potencia, las ciencias de la computación y el control digital. Actualmente trabajo en Cartagena de Indias Colombia, como docente investigador de planta, en el programa de Seguridad e Higiene Ocupacional.

Citas

M. Viviana and O. L. Castillo, "Colombian energy planning -Neither for energy, nor for Colombia," Energy Policy, vol. 129, pp. 1132-1142, 2019, doi: https://doi.org/10.1016/j.enpol.2019.03.025.

D. Silva Herranand T. Nakata, "Design of decentralized energy systems for rural electrification in developing countries considering regional disparity," Appl. Energy, vol. 91, no. 1, pp. 130-145, 2012, doi: https://doi.org/10.1016/j.apenergy.2011.09.022.

BP p.l.c., "Statistical Review of World Energy," London, 2018. [Online]. Available: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

C. Washburn and M. Pablo-Romero, "Measures to promote renewable energies for electricity generation in Latin American countries," Energy Policy, pp. 212-222, 2019, doi: https://doi.org/10.1016/j.enpol.2018.12.059.

S. E. Hosseini and M. A. Wahid, "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier forclean development," Renew. Sustain. Energy Rev., vol. 57, pp. 850-866, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.112.

N. Abdelhafidi, N. E. I. Bachari, and Z. Abdelhafidi, "Estimation of solar radiation using stepwise multiple linear regression with principal component analysis in Algeria," Meteorol. Atmos. Phys., vol. 133, no. 2, pp. 205-216, 2021, doi: https://doi.org/10.1007/s00703-020-00739-0.

K. Bouchouicha, N. Bailek, M. E.-S. Mahmoud, J. A. Alonso, A. Slimani, and A. Djaafari, "Estimation of MonthlyAverage Daily Global Solar Radiation Using Meteorological-Based Models in Adrar, Algeria," Appl. Sol. Energy, vol. 54, no. 6, pp. 448-455, 2018, doi: https://doi.org/10.3103/S0003701X1806004X.

X. Zhang and Z. Wei, "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability , vol. 11, no. 15. 2019, doi: https://doi.org/10.3390/su11154138.

J. Xue, T. L. Yip, B. Wu, C. Wu, and P. H. A. J. M. van Gelder, "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renew. Energy, vol. 172, pp. 897-917, 2021, doi: https://doi.org/10.1016/j.renene.2021.03.084.

K. Bouchouicha, M. A. Hassan, N. Bailek, and N. Aoun, "Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate," Renew. Energy, vol. 139, pp. 844-858, 2019, doi: https://doi.org/10.1016/j.renene.2019.02.071.

H. B. Tolabi, S.B. M. Ayob, M. H. Moradi, and M. Shakarmi, "New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations," Environ. Prog. Sustain. Energy, vol. 33, no. 3, pp. 1042-1050, Oct. 2014, doi: https://doi.org/10.1002/ep.11858.

U. Waqas, M. F. Ahmed, F. G. Awan, and Z. Hussain, "A Dimensionality Reduction-Based Approach to Select a Suitable Interpolator for the Mapping of Solar Irradiation Across Pakistan," MAPAN, 2021, doi: https://doi.org/10.1007/s12647-021-00435-3.

F. Li et al., "Novel models to estimate hourly diffuse radiation fraction for global radiation based on weather type classification," Renew. Energy, vol. 157, pp. 1222-1232, 2020, doi: https://doi.org/10.1016/j.renene.2020.05.080.

Z. Song etal., "General models for estimating daily and monthly mean daily diffuse solar radiation in China's subtropical monsoon climatic zone," Renew. Energy, vol. 145, pp. 318-332, 2020, doi: https://doi.org/10.1016/j.renene.2019.06.019.

J. Li, Z. Wang, X. Cheng, J. Shuai, C. Shuai, and J. Liu, "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, vol. 201, p. 117631, 2020, doi: https://doi.org/10.1016/j.energy.2020.117631.

K. Ansari, S. K. Panda, and P. Jamjareegulgarn, "Singular spectrum analysis of GPS derived ionospheric TEC variations over Nepal during the low solar activity period," Acta Astronaut., vol. 169, pp. 216-223, 2020, doi: https://doi.org/10.1016/j.actaastro.2020.01.014.

U. Munawar and Z. Wang, "A Framework of Using Machine Learning Approaches for Short-Term Solar Power Forecasting," J. Electr. Eng. Technol., vol. 15, no. 2, pp. 561-569, 2020, doi: https://doi.org/10.1007/s42835-020-00346-4.

H. Bouzgou and C. A. Gueymard, "Fast short-term global solar irradiance forecasting with wrapper mutual information," Renew. Energy, vol. 133, pp. 1055-1065, 2019, doi: https://doi.org/10.1016/j.renene.2018.10.096.

P. Chung et al., "An intelligent control strategy for energy storage systems in solar power generation based on long-short-term power prediction," in 2020 8th International Electrical Engineering Congress (iEECON), 2020, pp. 1-4, doi: https://doi.org/10.1109/iEECON48109.2020.229485.

A. Bakdi, W. Bounoua, S. Mekhilef, and L. M. Halabi, "Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV," Energy, vol. 189, p. 116366, 2019, doi: https://doi.org/10.1016/j.energy.2019.116366

S. Bandong, E. Leksono, A. Purwarianti, and E. Joelianto, "Performance Ratio Estimation and Prediction of Solar Power Plants Using Machine Learning to Improve Energy Reliability," in 2019 6th International Conference on Instrumentation, Control, and Automation (ICA), 2019, pp. 36-41, doi: https://doi.org/10.1109/ICA.2019.8916687.

J. Zhang, Y. Chi, and L. Xiao, "Solar Power Generation Forecast Based on LSTM," in 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), 2018, pp. 869-872, doi:

https://doi.org/10.1109/ICSESS.2018.8663788.

I. Jolliffe, "Principal Component Analysis," in International Encyclopedia of Statistical Science, M. Lovric, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1094-1096, doi: https://doi.org/10.1007/978-3-642-04898-2_455

C. M. Bishop, Pattern recognition and machine learning. New York : Springer, [2006] ©2006.

C. Bishop, "Machine learning and the learning machine with Dr. Christopher Bishop," Microsoft blog editor, 2018. https://www.microsoft.com/en-us/research/blog/machine-learning-and-the-learning-machine-with-dr-christopher-bishop/.

S. Balakrishnama and A. Ganapathiraju, "Institute For Signal And Information Processing Linear Discriminant Analysis-A Brief Tutorial."

A. J. Izenman, "Linear Discriminant Analysis," in Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning, New York, NY: Springer New York, 2008, pp. 237-280, doi: https://doi.org/10.1007/978-0-387-78189-1_8

Y. Qin, "A review of quadratic discriminant analysis for high-dimensional data," WIREs Comput. Stat. , vol. 10, no. 4, p. e1434, Jul. 2018, doi: https://doi.org/10.1002/wics.1434.

H. Zhang and J. Su, "Naive Bayesian Classifiers for Ranking," in Machine Learning: ECML 2004, 2004, pp. 501-512, doi: https://doi.org/10.1007/978-3-540-30115-8_46.

S. Suthaharan, "Support Vector Machine," in Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning, Boston, MA: Springer US, 2016, pp. 207-235, doi:https://doi.org/10.1007/978-1-4899-7641-3_9.

Z. Zhang, "Introduction to machine learning: k-nearest neighbors," Ann. Transl. Med., vol. 4, no. 11, p. 218, Jun. 2016, doi: https://doi.org/10.21037/atm.2016.03.37.

T. G. Dietterich, "Ensemble Methods in Machine Learning," in Multiple Classifier Systems, 2000, pp. 1-15, doi: https://doi.org/10.1007/3-540-45014-9_1.

"MERRA -www.soda-pro.com." http://www.soda-pro.com/web-services/meteo-data/merra (accessed Jun. 02, 2021).

Descargas

Publicado

2022-03-28

Cómo citar

Muñoz Torres, D. F., Montoya Giraldo, O. D., & Sabach Matos, S. A. (2022). Marco general para la extracción de información y estimación de radiación solar diaria. Scientia Et Technica, 27(01), 61–70. https://doi.org/10.22517/23447214.24744

Número

Sección

Bioingeniería