Manufactura y caracterización mecánica de material compuesto de fibra de carbon con matriz termoplástica PEEK



Palabras clave:

Carbon Fiber, Epoxy Resin, Manufacture, PEEK, Mechanical Characterization, Thread


En este estudio se desarrolló un proceso de manufactura sencillo, de bajo costo para producir un material compuesto de matriz termoplástica PolyEtherEtherKetone (PEEK) y fibra de carbón (CF) mediante moldeo en caliente. Se caracterizó mecánicamente el material compuesto CF/PEEK con ensayos de flexión en tres puntos y tensión, se obtuvieron el modulo elástico y la resistencia máxima a tensión, respectivamente. También roscas fueron maquinadas en el material compuestos y se evaluó la resistencia de estas roscas mediante pruebas de tensión. Se realizó una comparación del material compuesto CF/PEEK con el material compuesto de fibra de carbón y resina epoxi (CF/EP), los módulos elásticos, la resistencia máxima a la tensión y la resistencia de las roscas fueron comparadas. Se encontró que fue posible producir a bajo costo mediante moldeo al caliente este compuesto de CF/PEEK. El módulo elástico y la resistencia a la tensión fueron menores que las obtenidas en el CF/EP. Sin embargo, el desempeño del CF/PEEK a tensión en las roscas fue mejor comparado con el compuesto de CF/EP.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Joyner Esteban Caicedo-Zuñiga, Universidad del Valle

Engineer Caicedo received the title of Mechanical Engineer in 2016 from the Universidad del Valle. In 2019, he graduated in the Master’s Degree in Mechanical Engineering at the same institution. Currently, he works as a researcher for the Energy Sustainability Alliance for Colombia

Gonzalo Fernando Casanova-Garcia, Universidad del valle

Professor Casanova received the title of Mechanical Engineer in 2003 from Universidad del Valle. In 2006, he graduated in the Master’s Degree in Mechanical Engineering from Universidad del Valle. Later, he obtained a Ph. D. in Mechanical Engineering at University of Florida, United States, in 2013.His dissertation dealt with the influence of needle insertion speed on tissue damage and backflow during convection enhanced delivery of drugs in the brain. Currently, his main research areas are: fatigue analyses of mechanical systems, soft tissue mechanics, and mechanics of fiber reinforced materials, including the development of devices for orthopedic applications. His teaching areas are focused on dynamics, mechanical design, advanced calculus, and continuum mechanics.


[1] C. Soutis, "Fibre reinforced composites in aircraft construction," Prog. Aerosp. Sci., vol. 41, no. 2, pp. 143-151, 2005, DOI:

[2] A. Imad Shakir, O. Sief aldeen, H. Kamalaldin F. and J. Mohammed A., "Properties evaluation of fiber reinforced polymers and their constituent materials used in structures - A review," Mater. Today, vol. 43, p. 1003-1008, 2021, DOI:

[3] P. Mallick, "Fiber-reinforced composites materials," in Manufacturing and design, 3rd ed., vol. 20, 1989, pp. 172-173. DOI:

[4] T. J. Hoskins, K. D. Dearn and S. N. Kukureka, "Mechanical performance of PEEK produced by additive manufacturing," Polym. Test, vol. 70, pp. 511-519, 2018. DOI:

[5] S. Baeten and I. Verpoest, "Optimisation of a GMT-based cold pressing technique for low cost textile reinforced thermoplastic composites," Compos Part A-Appl S, no. 30, p. 667-682, 1999. DOI:

[6] N. Nier, E. Päßler, J. Weißhuhn, K. Roder, D. Nestler, L. Kroll, S. Spange and G. Wagner, "Evaluation of the molding process for production of short-fibre-reinforced C/C-SiC composites," J. Eur. Ceram. Soc., no. 40, p. 1057-1066, 2020. DOI:

[7] S. Guangyong, K. Xiangren, W. Zhen, L. Quantian and L. Qing, "Experimental investigation into stamping of woven CF/PP laminates: Influences of molding temperature on thermal, mesoscopic and macroscopic properties," Compos. Struct., no. 263, 2021. DOI:

[8] D. M. Wirth and J. K. Pokorski, "Design and fabrication of a low-cost pilot-scale melt-processing system," Polymer, no. 181, 2019. DOI:

[9] H. Chao and Q. Qing-Hua, "Advances in fused deposition modeling of discontinuous fiber/polymer composites," Curr Opin Solid State Mater Sci., no. 24, 2020. DOI:

[10] K. Palanikumar, M. Mudhukrishnan and P. Soorya Prabha, "Technologies in additive manufacturing for fiber reinforced composite materials: a review," Curr. Opin. Chem. Eng., no. 28, p. 51-59, 2020. DOI:

[11] N. Fuda, C. Weilong, Q. Jingjing, W. Junhua and W. Shiren, "Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling," Compos. B. Eng., no. 80, pp. 369-378, 2015. DOI:

[12] G. A. Ramadhani, S. Susmartini, L. Herdiman, I. Priadythama and D. Shepherd, "Advanced composite-based material selection for prosthetic socket application in developing countries," Cogent Eng., no. 7, 2020. DOI:

[13] A. Sazrhi, R. O. Bura and G. Amperiawan, "Mastery of Composite Materials to Support Indonesia's Defense Industry," IEEE 6th Asian Conference on Defense Technology (ACDT), pp. 13-15, 2019. DOI:

[14] K. Ghavami and A. Azadeh, "Nonconventional materials (NOCMAT) for ecological and sustainable development," MRS Adv., vol. 1, no. 53, pp. 3553-3563, 2016. DOI:

[15] T. Suoware, S. Onyemaechi, B. Ugwu and E. Amula, "Development of flame retarded composite fibreboard for building applications using oil palm residue," Materiales de Construcción, vol. 69, no. 335, 2019. DOI:

[16] M. Ramesh, T. S. A. Atreya, U.S. Aswin, H. Eashwar and C. Deepa, "Processing and mechanical property evaluation of banana fiber reinforced polymer composites," Procedia Eng., vol. 97, pp. 563-572, 2014. DOI:

[17] A. Majid, "Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction," Materiales de Construcción, vol. 66, no. 321, 2016. DOI:

[18] N. Batista, P. Olivier, G. Bernhart, M. Rezende and E. Botelho, "Correlation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates", Materials Research, vol. 19, no. 1, pp. 195-201, 2016. DOI:

[19] M. Kaya , M. Aslan , O. Güler and Ü. Alver , "effect of fibre content on the mechanical properties of basalt fibre reinforced polylactic acid (pla) composites", Textile and Apparel, vol. 28, no. 1, pp. 66-71, Mar. 2018

[20] R. Mazur, G. Cândido, M. Rezende and E. Botelho, "Accelerated aging effects on carbon fiber PEKK composites manufactured by hot compression molding", Journal of Thermoplastic Composite Materials, vol. 29, no. 10, pp. 1429-1442, 2016. DOI:

[21] N. Cogswell, "Thermoplastic aromatic polymer composites," Int. Mater. Rev., 1st ed., vol. 39, no. 3, pp. 124-124, 1994. DOI:

[22] Hexcel Corporation, hexcel, [On line]. Available: [Last access: 25 06 2020].

[23] E. Akca and A. Gursel, "A Review on the Matrix Toughness of Thermoplastic Materials," Period. Eng. Nat. Sci., vol. 3, no. 2, pp. 1-9, 2015. DOI:

[24] F. Campbell, Manufacturing Processes for Advanced Composites, Elsevier, 2004

[25] M. Sanjay and B. Yogesha, "Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences," J. Ind. Text., vol. 47, no. 7, pp. 1830-1848, 2017. DOI:

[26] K. Sabeel Ahmed and S. Vijayarangan, "Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites," J. Mater. Process. Technol., vol. 207, pp. 330-335, 2008. DOI:

[27] ASTM, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, 2007.

[28] ASTM, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, 2017.

[29] ASTM, Standard Specification and Test Methods for Metallic Medical Bone Screws, West Conshohocken: ASTM Int, 2017.

[30] L. Chunrui, X. Nou, Z. Ting., Z. Xin, L. Hanxiong, L. Xue, L. Xiao and Z. Dongxing, "The Optimization of Process Parameters and Characterization of High-Performance CF/PEEK Composites Prepared by Flexible CF/PEEK Plain Weave Fabrics," Polymers, vol. 11, no. 53, p. 16, 2018. DOI:

[31] H. Elwathing, G. Dengteng, Y. Lili, Z. Jianfeng and L. Mingxia, Y. Muhuo and Z. Shu, "Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF," Compos Part A-Appl S, vol. 112, pp. 155-160, 2018. DOI:

[32] G. Shang-Lin and K. Jang-Kyo, "Cooling rate influences in carbon fiber/PEEK composites. Part 1. Crystallinity and interface adhesion," Compos Part A-Appl S, vol. 31, pp. 517-3530, 2000. DOI:

[33] M. Sharma, J. Bijwe and P. Mitschang, "Wear performance of PEEK-carbon fabric composites with strengthened fiber-matrix interface," Wear, vol. 271, pp. 2061-2268, 2011. DOI:




Cómo citar

Caicedo-Zuñiga, J. E., & Casanova-Garcia, G. F. . (2022). Manufactura y caracterización mecánica de material compuesto de fibra de carbon con matriz termoplástica PEEK. Scientia Et Technica, 27(4), 223–228.