Una Una solución técnica para el seguimiento de la calidad de las playas turísticas

Una solución técnica para el seguimiento de la calidad de las playas turísticas


Autores/as

DOI:

https://doi.org/10.22517/23447214.24879

Palabras clave:

Calidad de playa, Modelado de Canales, IEEE 802.15.4, LR-WPAN, Redes en Malla

Resumen

En términos de sostenibilidad de las playas turísticas, un factor de impacto es la medición de parámetros asociados a la calidad del ecosistema, la calidad sanitaria y la calidad recreativa. La medición permite identificar el deterioro y las virtudes de este tipo de playas para tomar decisiones acertadas sobre la gestión del litoral. El trabajo presenta las condiciones y especificaciones técnicas del sistema de monitoreo para las playas de la ciudad de Santa Marta. La solución incluye los nodos sensores, el nodo sumidero, el centro de monitoreo, la red de sensores inalámbricos en malla y los enlaces de radio para interconectar las cinco playas. Para que el sistema fuera viable, se hizo un prototipo y se probó. La distancia entre los nodos de la malla se determinó en base a las mediciones de la intensidad de la señal recibida y los paquetes perdidos, a partir del modelo empírico de pérdidas simplificado y el sombreado en el canal inalámbrico. Las características de los radioenlaces se establecieron utilizando la topografía digital del terreno y el modelo Long ley-Rice. Se obtuvo una atenuación de canal inalámbrico promedio de -42,46 dB, exponente de pérdida de trayectoria de 2,08, sombreado de 5,6 dB para playas y una distancia entre nodos de 130 metros. Adicionalmente, se parametrizaron siete radioenlaces para sortear los cerros de la Sierra Nevada de Santa Marta. Para una malla triangular y los dispositivos seleccionados, las pruebas dieron un 99,2% de fiabilidad. Los resultados obtenidos apoyan la implementación de la propuesta.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luis Leonardo Camargo Ariza, Dr., Universidad del Magdalena

Luis Leonardo Camargo Ariza es ingeniero electrónico, magíster en ingeniería electronica y doctor en ciencias, mención gerencia. Es profesor titular de la Universidad del Magdalena e integrante del Grupo de Investigación en Desarrollo Electrónico y Aplicaciones Móviles (GIDEAM) de esta institución. ORCID: https://orcid.org/0000-0002-7956-441X

Maira Cecilia Gasca Mantilla, Dra., Universidad Antonio Nariño

Maira Cecilia Gasca Mantilla es ingeniera electrónica, magíster en mantenimiento y doctora en ciencias, mención gerencia. Es profesora asistente de la Universidad Antonio Nariño e integrante del Grupo de Investigación REM (Research on Energy and Materials) de la misma institución. ORCID: https://orcid.org/0000-0003-0801-1161

Jorge Gomez Rojas, Dr., Universidad del Magdalena

Jorge Gómez-Rojas recibe el titulo en Ingeniería Electrónica en 1999. Se graduó en 2003 como Especialista en Teleinformática. Obtuvo una Maestría en Ingeniería Electrónica y un Doctorado en Ingeniería en 2018. Actualmente es profesor titular de la Universidad del Magdalena, líder del Grupo de Investigación GIDEAM. Es revisor de pares de Colciencias y miembro senior del IEEE ORCID: https://orcid.org/0000-0002-0840-8743

Citas

[1] R. Costanza, R. d’Arge, R. de Groot, et al, “The value of the world’s ecosystem services and natural capital,” Ecological Economics, vol. 25, no. 1, pp. 3–15, 1998. https://doi.org/10.1016/S0921-8009(98)00020-2
[2] A. Enríquez, and A. Bujosa, “Measuring the economic impact of climate-induced environmental changes on sun-and-beach tourism”. Climatic Change, vol. 160, no. 1 pp. 203–217, 2020. https://doi.org/10.1007/s10584-020-02682-w
[3] A. Krelling, A. Williams and A. Turra, “Differences in perception and reaction of tourist groups to beach marine debris that can influence a loss of tourism revenue in coastal areas,” Marine Policy, vol. 85, pp. 87-99, 2017. https://doi.org/10.1016/j.marpol.2017.08.021
[4] L. Heidbreder, I. Bablok, S. Drews, et al., “Tackling the plastic problem: A review on perceptions, behaviors, and interventions,” Science of The Total Environment, vol. 668, pp. 1077-1093, 2019. https://doi.org/10.1016/j.scitotenv.2019.02.437
[5] N. Rangel-Buitrago, A. Williams and G. Anfuso, “Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls,” Ocean & Coastal Management, vol. 156, pp. 58-75, 2018. https://doi.org/10.1016/j.ocecoaman.2017.04.006
[6] ANATO, “II Encuesta Tendencias de Viajes Covid-19 en Colombia,” La asociación colombiana de agencias de viajes y turismo, Bogotá, 2020. http://circularesanato.org/circularesanato.org/archivos/2021/Resultados%20encuesta%20reactivaci%C3%B3n%20II.pdf
[7] A. Williams, N. Rangel-Buitrago, G. Anfuso, et al., “Litter impacts on scenery and tourism on the Colombian north Caribbean coast,” Tourism Management, vol. 55, pp. 209-224, 2016. https://doi.org/10.1016/j.tourman.2016.02.008
[8] U. Gretzel, “From smart destinations to smart tourism regions,” Investigaciones Regionales, vol. 42, pp. 171–184, 2018. https://investigacionesregionales.org/wp-content/uploads/sites/3/2019/01/10-GRETZEL.pdf
[9] J. Gomis-López and F. González-Reverté, “Smart Tourism Sustainability Narratives in Mature Beach Destinations. Contrasting the Collective Imaginary with Reality,” Sustainability, vol. 12, no. 12, pp 1-24, 5083, 2020. https://doi.org/10.3390/su12125083
[10] L. Camargo, J. Gomez-Rojas and M. Gasca, La ciudad inteligente y la gestión de las TIC Caso de estudio: ciudad de Santa Marta. Santa Marta: Editorial UNIMAGDALENA, 2020. https://editorial.unimagdalena.edu.co/Editorial/Publicacion/4153
[11] S. Corbett, G. Rubin, G. Curry et al., “The health effects of swimming at Sydney beaches. The Sydney Beach Users Study Advisory Group,” American Journal of Public Health, vol. 83, pp. 1701–1706, Dec. 1993. https://doi.org/10.2105/AJPH.83.12.1701
[12] A. Prüss, “Review of epidemiological studies on health effects from exposure to recreational water,” International Journal of Epidemiology, vol 27, no. 1, pp. 1-9, 1998. https://doi.org/10.1093/ije/27.1.1
[13] C. Botero, Y. Hurtado, J. González et al, “Metodología de cálculo de la capacidad de carga turística como herramienta para la gestión ambiental y su aplicación en cinco playas del caribe norte Colombiano,” Gestión. y Ambiente, vol. 11, no 3, pp. 1–14, 2008. https://repositorio.unal.edu.co/handle/unal/28208
[14] Y. Hurtado, C. Botero, and E. Herrera, “Selección y propuesta de parámetros para la determinación de la calidad ambiental en playas turísticas del caribe colombiano,” Ciencia en su PC, vol. 4, no. 4, pp. 42–53, 2009. https://www.redalyc.org/articulo.oa?id=181317813004
[15] C. Botero, C. Pereira, M. Tosi, et al, “Design of an index for monitoring the environmental quality of tourist beaches from a holistic approach,” Ocean & Coastal Management, vol. 108, pp. 65–73, 2015. https://doi.org/10.1016/j.ocecoaman.2014.07.017
[16] M. Gheisari, J. Alzubi, X. Zhang, et al. “A new algorithm for optimization of quality of service in peer to peer wireless mesh networks,” Wireless Netw, vol. 26, pp. 4965–4973, 2020. https://doi.org/10.1007/s11276-019-01982-z
[17] J. P. García-Martín and A. Torralba, "On the Combination of LR-WPAN and LPWA Technologies to Provide a Collaborative Wireless Solution for Diverse IoT," in 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 2019, pp. 1-4. https://doi.org/10.1109/WiMOB.2019.8923566
[18] Y. P. Tsang, K. L. Choy, C. H. Wu, et al "Multi-Objective Mapping Method for 3D Environmental Sensor Network Deployment," IEEE Communications Letters, vol. 23, no. 7, pp. 1231-1235, July 2019. https://doi.org/10.1109/LCOMM.2019.2914440
[19] K. Adu-Manu, F. Katsriku, J. Abdulai, et al. "Smart River Monitoring Using Wireless Sensor Networks", Wireless Communications and Mobile Computing, vol. 2020, Article ID 8897126, 2020. https://doi.org/10.1155/2020/8897126
[20] A. Pozzebon, A. Andreadis, D. Bertoni, et al., “Wireless Sensor Network Framework for Real-Time Monitoring of Height and Volume Variations on Sandy Beaches and Dunes,” ISPRS International Journal of Geo-Information, vol. 7, no. 4:141, 2018. https://doi.org/10.3390/ijgi7040141
[21] S. Ullo and G. Sinha, “Advances in Smart Environment Monitoring Systems Using IoT and Sensors,” Sensors, vol. 20, no. 11, 2020. https://doi.org/10.3390/s20113113
[22] A. Khalifeh, K.A Darabkh, A.M Khasawneh, et al., “Wireless Sensor Networks for Smart Cities: Network Design, Implementation and Performance Evaluation,” Electronics, vol. 10, no. 2, 2021. https://doi.org/10.3390/electronics10020218
[23] P. Nguyen and L.-w Kim, “Sensor System: A Survey of Sensor Type, Ad Hoc Network Topology and Energy Harvesting Techniques,” Electronics vol. 10, no 2, pp. 1-20, 2021. https://doi.org/10.3390/electronics10020219
[24] A. Hilmani, A. Maizate, L. Hassouni, "Automated Real-Time Intelligent Traffic Control System for Smart Cities Using Wireless Sensor Networks," Wireless Communications and Mobile Computing, vol. 28, 2020, Article ID 8841893, 28 pages, 2020. https://doi.org/10.1155/2020/8841893
[25] AG. Alvanou, A. Zervopoulos, A. Papamichail et al., “CaBIUs: Description of the Enhanced Wireless Campus Testbed of the Ionian University,” Electronics, vol.9, no. 3: 454, 2020. https://doi.org/10.3390/electronics9030454
[26] M. Cheffena and M. Mohamed, "Empirical Path Loss Models for Wireless Sensor Network Deployment in Snowy Environments," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2877-2880, 2017. https://doi.org/10.1109/LAWP.2017.2751079
[27] T. O. Olasupo, "Wireless Communication Modeling for the Deployment of Tiny IoT Devices in Rocky and Mountainous Environments," IEEE Sensors Letters, vol. 3, no. 7, pp. 1-4, 2019. https://doi.org/10.1109/LSENS.2019.2918331
[28] T. Olasupo and C. Otero, "The Impacts of Node Orientation on Radio Propagation Models for Airborne-Deployed Sensor Networks in Large-Scale Tree Vegetation Terrains," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 256-269, 2020. https://doi.org/10.1109/TSMC.2017.2737473
[29] Yin Wu, Genwei Guo, Guiyun Tian, Wenbo Liu, "A Model with Leaf Area Index and Trunk Diameter for LoRaWAN Radio Propagation in Eastern China Mixed Forest", Journal of Sensors, vol. 2020, Article ID 2687148, 16 pages, 2020. https://doi.org/10.1155/2020/2687148
[30] W. Tang, X. Ma, J. Wei, et al., “Measurement and Analysis of Near-Ground Propagation Models under Different Terrains for Wireless Sensor Networks,” Sensors, vol. 18, no. 19, 2019. https://doi.org/10.3390/s19081901
[31] H. Jawad, A. Jawad, R. Nordin et al., "Accurate Empirical Path-Loss Model Based on Particle Swarm Optimization for Wireless Sensor Networks in Smart Agriculture," IEEE Sensors Journal, vol. 20, no. 1, pp. 552-561, 2020. https://doi.org/10.1109/JSEN.2019.2940186
[32] T. Olasupo, C. E. Otero, K. O. Olasupo and I. Kostanic, "Empirical path loss models for wireless sensor network deployments in short and tall natural grass environments", IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 4012-4021, 2016. https://doi.org/10.1109/TAP.2016.2583507
[33] M. Nilsson, C. Gustafson, T. Abbas, F. Tufvesson, “A Path Loss and Shadowing Model for Multilink Vehicle-to-Vehicle Channels in Urban Intersections,” Sensors, vol. 18, no. 12, 2018. https://doi.org/10.3390/s18124433
[34] T. Olasupo, C. Otero, L. Otero, et al., "Path Loss Models for Low-Power, Low-Data Rate Sensor Nodes for Smart Car Parking Systems," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 6, pp. 1774-1783, 2018. https://doi.org/10.1109/TITS.2017.2741467
[35] L. Camargo, B. Medina, and J. Gómez-Rojas, “Sensors network for tourist beaches,” in 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Pucon, October, 2017. pp. 1-5. https://doi.org/10.1109/CHILECON.2017.8229589
[36] A. Goldsmith, “Wireless communications,” Cambridge University Press, Cambrdige, 2017.
[37] Digi International Inc, “Digi XBee 3 Zigbee 3.0 data sheet,” 2020. https://www.digi.com/resources/library/data-sheets/ds_xbee-3-zigbee-3
[38] W. C. Lee, “Estimate of local average power of a mobile radio signal,” IEEE Transactions on Vehicular Technology, vol. 34, no. 1, pp. 22–27. 1985. https://doi.org/10.1109/T-VT.1985.24030
[39] ITU, “Manual: Comprobación técnica del espectro,” Oficina de Radiocomunicaciones, 2011. http://handle.itu.int/11.1002/pub/80399e8b-en
[40] A. Navarro, D. Guevara and G. A. Florez, "An Adjusted Propagation Model for Wireless Sensor Networks in Corn Fields," in 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, pp. 1-3. 2020, https://doi.org/10.23919/URSIGASS49373.2020.9232365
[41] J. Gomez-Rojas, L. Camargo, and R. Montero, "Mobile wireless sensor networks in a smart city," International journal on smart sensing and intelligent systems, vol 11, no. 1, pp. 1-8, 2018. https://doi.org/10.21307/ijssis-2018-009
[42] A. F. Molisch, K. Balakrishnan, C. Chong et al, “IEEE 802.15.4a channel model-final report”, 2004. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.2038&rep=rep1&type=pdf

Descargas

Publicado

2022-09-30

Cómo citar

Camargo Ariza, L. L., Gasca Mantilla, M. C., & Gomez Rojas, J. (2022). Una Una solución técnica para el seguimiento de la calidad de las playas turísticas: Una solución técnica para el seguimiento de la calidad de las playas turísticas. Scientia Et Technica, 3(27), 146–154. https://doi.org/10.22517/23447214.24879