Aprendizaje Paramétrico en las redes bayesianas para el Diagnostico de enfermedades cardiovasculares
DOI:
https://doi.org/10.22517/23447214.8605Palabras clave:
Bayesian networks, databases, diagnostics, disease, parametric learningResumen
En esta investigación se muestra que el aprendizaje paramétrico en una red bayesiana puede ser usado en el diagnóstico de enfermedades cardiovasculares. El objetivo es determinar si se debe o no aplicar fármacos a un paciente con enfermedad cardiovascular utilizando como herramienta una aplicación de software en Java, realizada por los autores. Las redes bayesianas se utilizan como representación grafica del conocimiento previo y métodos de razonamiento en modelos probabilísticos. Para la creación de una red existen dos fases de aprendizaje: aprendizaje estructural y aprendizaje paramétrico. En este estudio se hizo uso del aprendizaje paramétrico.
Descargas
Descargas
-
Vistas(Views): 712
- PDF Descargas(Downloads): 740
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor y licencias
La revista es de acceso abierto gratuito y sus artículos se publican bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial-Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
Los autores de un artículo aceptado para publicación cederán la totalidad de los derechos patrimoniales a la Universidad Tecnológica de Pereira de manera gratuita, teniendo en cuenta lo siguiente: En caso de que el trabajo presentado sea aprobado para su publicación, los autores deben autorizar de manera ilimitada en el tiempo, a la revista para que pueda reproducirlo, editarlo, distribuirlo, exhibirlo y comunicarlo en cualquier lugar, ya sea por medios impresos, electrónicos, bases de datos, repositorios, discos ópticos, Internet o cualquier otro medio requerido.
Los cedentes mediante contrato CESIÓN DE DERECHOS PATRIMONIALES declaran que todo el material que forma parte del artículo está totalmente libre de derechos de autor de terceros y, por lo tanto, se hacen responsables de cualquier litigio o reclamación relacionada o reclamación relacionada con derechos de propiedad intelectual, exonerando de toda responsabilidad a la Universidad Tecnológica de Pereira (entidad editora) y a su revista Scientia et Technica. De igual forma, los autores aceptan que el trabajo que se presenta sea distribuido en acceso abierto gratuito, resguardando los derechos de autor bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial- Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
https://creativecommons.org/licenses/by-nc-sa/4.0/
A los autores, la revista Scientia et Technica tiene la obligación de respetarle los derechos morales (artículo 30 de la Ley 23 de 1982 del Gobierno Colombiano) que se les debe reconocen a estos la paternidad de la obra, el derecho a la integridad y el derecho de divulgación. Estos no se pueden ceder ni renunciar.