Indicadores para la planeación del mantenimiento basado en eficiencia energética en redes de intercambiadores de calor


Autores/as

DOI:

https://doi.org/10.22517/23447214.23621

Palabras clave:

Mantenimiento Centrado en Eficiencia, uso racional de la energía, tren de precalentamiento, unidad de destilación de crudo, refinerías

Resumen

Gracias a las normativas de gestión de activos, Las practicas modernas de mantenimiento están asumiendo cada vez un rol más gerencial, y siendo usadas para lograr ahorros y optimizar el uso de la energía. Así las cosas, conocer en todo momento el estado de los equipos mantenidos, permite realizar las intervenciones oportunas y necesarias que generen valor a la empresa, y recuperar las condiciones iniciales de los equipos o cercanas a estas. Las redes de intercambiadores de calor, más que un activo productivo, constituyen una estrategia de ahorro energético, en pro de tener menores costos de combustible, control de emisiones, uso racional de la energía, etc. en los hornos atmosféricos de las unidades de destilación de crudo, y otras unidades que realizan procesos similares, por lo que mantenerlos en sus mejores condiciones la mayor parte del tiempo es menester. A continuación, se propone una metodología para el diagnóstico de los equipos de la red, y la planeación del mantenimiento justificada por la eficiencia energética de los equipos y el impacto económico de la intervención. Para esto se presentan a) los indicadores clave de desempeño de los intercambiadores, b) un indicador que sirve como justificación económico-energética de las intervenciones de mantenimiento, c) cronograma de mantenimiento de algunos de los equipos (prueba piloto) de la red de intercambiadores de calor en estudio. La metodología desarrollada utiliza valores reales operación y sus resultados están aplicados logrando ahorros de 150.000 USD.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

B. L. Yeap, D. I. Wilson, G. T. Polley, and S. J. Pugh, "Mitigation of crude oil refinery heat exchanger," Chem. Eng., vol. 82, no. January, pp. 53-71, 2004.

https://doi.org/10.1205/026387604772803070

M. R. Jafari Nasr and M. Majidi Givi, "Modeling of crude oil fouling in preheat exchangers of refinery distillation units," Appl. Therm. Eng., vol. 26, no. 14-15, pp. 1572-1577, 2006, DOI: 10.1016/j.applthermaleng.2005.12.001.

https://doi.org/10.1016/j.applthermaleng.2005.12.001

A. Hoang, P. Do, and B. Iung, "Energy efficiency performance-based prognostics for aided maintenance decision-making: Application to a manufacturing platform," J. Clean. Prod., vol. 142, pp. 2838-2857, 2017, DOI: 10.1016/j.jclepro.2016.10.185.

https://doi.org/10.1016/j.jclepro.2016.10.185

J. Tian, Y. Wang, and X. Feng, "Simultaneous optimization of flow velocity and cleaning schedule for mitigating fouling in refinery heat exchanger networks," Energy, vol. 109, pp. 1118-1129, 2016, DOI: 10.1016/j.energy.2016.05.053.

https://doi.org/10.1016/j.energy.2016.05.053

M. C. Georgiadis and L. G. Papageorgiou, "Optimal energy and cleaning management in heat exchanger networks under fouling," Chem. Eng. Res. Des., vol. 78, no. 2, pp. 168-179, 2000, DOI: 10.1205/026387600527194.

https://doi.org/10.1205/026387600527194

M. C. Georgiadis, L. G. Papageorgiou, and S. Macchietto, "Optimal Cleaning Policies in Heat Exchanger Networks under Rapid Fouling," Ind. Eng. Chem. Res., vol. 39, no. 2, pp. 441-454, Feb. 2000, DOI: 10.1021/ie990166c.

https://doi.org/10.1021/ie990166c

S. M. Zubair, A. K. Sheikh, M. Younas, and M. O. Budair, "A risk based heat exchanger analysis subject to fouling Part I : Performance evaluation," Energy, vol. 25, pp. 427-443, 2000, DOI: DOI: 10.1016/s0360-5442(99)00080-8.

https://doi.org/10.1016/S0360-5442(99)00080-8

C. Rodriguez and R. Smith, "Optimization of operating conditions for mitigating fouling in heat exchanger networks," Chem. Eng. Res. Des., vol. 85, no. 6 A, pp. 839-851, 2007, DOI: 10.1205/cherd06046.

https://doi.org/10.1205/cherd06046

A. K. Sheikh, S. M. Zubair, M. Younas, and M. O. Budair, "A risk based heat exchanger analysis subject to fouling: Part II: Economics of heat exchangers cleaning," Energy, vol. 25, no. 5, pp. 445-461, 2000, DOI: 10.1016/S0360-5442(99)00081-X.

https://doi.org/10.1016/S0360-5442(99)00081-X

F. Smaïli, V. S. Vassiliadis, and D. I. Wilson, "Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning," Energy Fuels, vol. 15, no. 5, pp. 1038-1056, 2001, DOI: 10.1021/ef010052p.

https://doi.org/10.1021/ef010052p

E. M. Ishiyama, W. R. Paterson, and D. I. Wilson, "Thermo-hydraulic channelling in parallel heat exchangers subject to fouling," Chem. Eng. Sci., vol. 63, no. 13, pp. 3400-3410, 2008, DOI: 10.1016/j.ces.2008.04.008.

https://doi.org/10.1016/j.ces.2008.04.008

A. J. Waters, C. G. Akinradewo, and D. Lamb, "Fouling: Implementation of a Crude Preheat Train Performance Monitoring Application at the Irving Oil Refinery," Int. Conf. Heat Exch. Fouling Clean. VIII, vol. 2009, pp. 33-38, 2009.

A. C. Caputo, P. M. Pelagagge, and P. Salini, "Joint economic optimization of heat exchanger design and maintenance policy," Appl. Therm. Eng., vol. 31, no. 8-9, pp. 1381-1392, 2011, DOI: 10.1016/j.applthermaleng.2010.12.033.

https://doi.org/10.1016/j.applthermaleng.2010.12.033

Y. Wang, M. Pan, I. Bulatov, R. Smith, and J. K. Kim, "Application of intensified heat transfer for the retrofit of heat exchanger network," Appl. Energy, vol. 89, no. 1, pp. 45-59, 2012, DOI: 10.1016/j.apenergy.2011.03.019.

https://doi.org/10.1016/j.apenergy.2011.03.019

B. C. G. Assis et al., "Constrained thermohydraulic optimization of the flow rate distribution in crude preheat trains," Chem. Eng. Res. Des., vol. 91, no. 8, pp. 1517-1526, 2013, DOI: 10.1016/j.cherd.2013.06.005.

https://doi.org/10.1016/j.cherd.2013.06.005

T. R. Biyanto, M. Ramasamy, A. B. Jameran, and H. Y. Fibrianto, "Thermal and hydraulic impacts consideration in refinery crude preheat train cleaning scheduling using recent stochastic optimization methods," Appl. Therm. Eng., vol. 108, no. 5, pp. 1436-1450, Sep. 2016, DOI: 10.1016/j.applthermaleng.2016.05.068.

https://doi.org/10.1016/j.applthermaleng.2016.05.068

E. Diaz-Bejarano, F. Coletti, and S. Macchietto, "Modeling and Prediction of Shell-Side Fouling in Shell-and-Tube Heat Exchangers," Heat Transfer Engineering, 2018.

https://doi.org/10.1080/01457632.2018.1446814

Z. Bin Tajudin, "Experiments , Modelling and Validation of Crude Oil Fouling on Large Scale Rig," Imperial College London, 2015.

E. Davoudi and B. Vaferi, "Chemical Engineering Research and Design Applying artificial neural networks for systematic estimation of degree of fouling in heat exchangers," Chem. Eng. Res. Des., vol. 130, pp. 138-153, 2017, DOI: 10.1016/j.cherd.2017.12.017.

https://doi.org/10.1016/j.cherd.2017.12.017

W. Ebert and C. B. Panchal, "Analysis of Exxon crude-oil-slip stream coking data," in Fouling mitigation of industrial heat exchangers, 1995, pp. 18-23, URL: https://www.osti.gov/servlets/purl/453433.

D. K. Mohanty and P. M. Singru, "Use of C-factor for monitoring of fouling in a shell and tube heat exchanger," Energy, vol. 36, no. 5, pp. 2899-2904, 2011, DOI: 10.1016/j.energy.2011.02.032.

https://doi.org/10.1016/j.energy.2011.02.032

S. K. Ogbonnaya and O. O. Ajayi, "Fouling phenomenon and its effect on heat exchanger: A review," Front. Heat Mass Transf., vol. 9, pp. 2007-2018, 2017, DOI: 10.5098/hmt.9.31.

https://doi.org/10.5098/hmt.9.31

G. T. Polley, D. I. Wilson, B. L. Yeap, and S. J. Pugh, "Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains," in Applied Thermal Engineering, 2002, vol. 22, no. 7, pp. 777-788, DOI: 10.1016/S1359-4311(02)00023-6.

https://doi.org/10.1016/S1359-4311(02)00023-6

D. I. Wilson, G. T. Polley, and S. J. Pugh, "Ten Years of Ebert, Panchal and the 'Threshold Fouling' Concept," in 6th International Conference on Heat Exchanger Fouling and Cleaning - Challenges and Opportunities, 2005, pp. 25-36.

D. I. Wilson, E. M. Ishiyama, and G. T. Polley, "Twenty Years of Ebert and Panchal-What Next?," Heat Transf. Eng., vol. 38, no. 7-8, 2017, DOI: 10.1080/01457632.2016.1206407.

https://doi.org/10.1080/01457632.2016.1206407

N. Shetty, U. B. Deshannavar, R. Marappagounder, and R. Pendyala, "Improved threshold fouling models for crude oils," Energy, vol. 111, pp. 453-467, 2016, DOI: 10.1016/j.energy.2016.05.130.

https://doi.org/10.1016/j.energy.2016.05.130

F. Smaïli, V. S. Vassiliadis, and D. I. Wilson, "Optimization of cleaning schedules in heat exchanger networks subject to fouling," Chem. Eng. Commun., vol. 189, no. 11, pp. 1517-1549, 2002, DOI: 10.1080/00986440214999.

https://doi.org/10.1080/00986440214999

F. Smaïli, V. S. Vassiliadis, and D. I. Wilson, "Long-term scheduling of cleaning of heat exchanger networks: Comparison of outer approximation-based solutions with a backtracking threshold accepting algorithm," Chem. Eng. Res. Des., vol. 80, no. 6, pp. 561-578, Sep. 2002, DOI: 10.1205/026387602760312764.

https://doi.org/10.1205/026387602760312764

J. L. Borges, E. M. Queiroz, F. L. P. Pessoa, F. S. Liporace, S. G. Oliveira, and A. L. H. Costa, "Fouling management in crude oil preheat trains through stream split optimization," in Computer Aided Chemical Engineering, 2009, vol. 27, no. C, pp. 1587-1592, DOI: 10.1016/S1570-7946(09)70655-8.

https://doi.org/10.1016/S1570-7946(09)70655-8

L. O. de Oliveira Filho, F. S. Liporace, E. M. Queiroz, and A. L. H. Costa, "Investigation of an alternative operating procedure for fouling management in refinery crude preheat trains," Appl. Therm. Eng., vol. 29, no. 14-15, pp. 3073-3080, 2009, DOI: 10.1016/j.applthermaleng.2009.04.012.

https://doi.org/10.1016/j.applthermaleng.2009.04.012

D. Kern and R. Seaton, "A theoretical analysis of thermal surface fouling," Br Chem Eng, vol. 4, pp. 258-262, 1959.

G. T. Polley, D. I. Wilson, B. L. Yeap, and S. J. Pugh, "Use of crude oil fouling threshold data in heat exchanger design," in Applied Thermal Engineering, 2002, vol. 22, no. 7, pp. 763-776, DOI: 10.1016/S1359-4311(02)00021-2.

https://doi.org/10.1016/S1359-4311(02)00021-2

S. Sanaye and B. Niroomand, "Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule," Energy Convers. Manag., vol. 48, no. 5, pp. 1450-1461, 2007, DOI: 10.1016/j.enconman.2006.12.006.

https://doi.org/10.1016/j.enconman.2006.12.006

Tubular Exchanger Manufacturers Association Inc, Standard of the Tubular Exchanger Manufacturers Association, Ninth Edition. 2007.

Y. A. Cengel, Heat Transfer A practical Approach, 2nd ed. 2003.

F. J. González Fernández, Auditoría del mantenimiento e indicadores de gestión, 1st ed. Madrid, España: Fundación Confemetal, 2004.

Descargas

Publicado

2020-09-30

Cómo citar

Yabrudy-Mercado, D. E., López-Sarria, B. S. S., Fajardo-Cuadro, J. G., & Cardona-Agudelo, C. A. (2020). Indicadores para la planeación del mantenimiento basado en eficiencia energética en redes de intercambiadores de calor. Scientia Et Technica, 25(3), 367–371. https://doi.org/10.22517/23447214.23621

Número

Sección

Mecánica