Clasificación del álgebra de Lie, leyes de conservación y soluciones invariantes para un caso particular de la ecuación generalizada e Levinson-Smith
DOI:
https://doi.org/10.22517/23447214.24960Palabras clave:
Soluciones Invariantes, Grupo de simetrías de Lie, Sistema Optimo, Clasificación del álgebra de Lie, Simetrías variacionales, Leyes de Conservación, Teorema de NoetherResumen
En este estudio, examinamos una instancia específica de la ecuación generalizada de Levinson-Smith, que está vinculada con la ecuación de Liènard y tiene una gran importancia desde las perspectivas de la física, las matemáticas y la ingeniería. Esta ecuación subyacente tiene aplicaciones prácticas en mecánica y dinámica no lineal, y ha sido ampliamente explorada en el esquema cualitativo. Nuestro enfoque implica aplicar el método de grupos de Lie a esta ecuación. Al hacerlo, obtenemos los operadores generadores óptimos del sistema que se refieren a la instancia específica de la ecuación generalizada de Levinson-Smith. Luego, se utilizan estos operadores para definir todas las soluciones invariantes asociadas con la ecuación. Además, demostramos las simetrías variacionales y las leyes de conservación correspondientes utilizando el teorema de Noether. Finalmente, categorizamos el álgebra de Lie relacionada con la ecuación dada.
Descargas
Citas
[1] S. Lie, Theorie der transformationsgruppen, Mathematische Annalen 2 (1970).
[2] E. Noether, Invariante variationsprobleme. nachrichten der königlichen gessellschaft der wissenschaften. mathematisch-physikalishe klasse, Transport Theory and Statistical Physics (1918) 183-207.
[3] N. H. Ibragimov, CRC handbook of Lie group analysis of differential equations, Vol. 3, CRC press, 1995.
[4] S. Dimas, D. Tsoubelis, Sym: A new symmetry-finding package for mathematica, in: Proceedings of the 10th international conference in modern group analysis, University of Cyprus Press, 2004, pp. 64-70.
[5] Y. Ruo-Xia, L. Sen-Yue, A maple package to compute lie symmetry groups and symmetry reductions of (1+ 1)-dimensional nonlinear sys- tems, Chinese Physics Letters 25 (6) (2008) 1927. DOI: https://doi.org/10.1088/0256-307X/25/6/002
[6] G. Bluman, S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences (81), Springer, New York, (1989).DOI: https://doi.org/10.1007/978-1-4757-4307-4
[7] L. Ovsyannikov, Group analysis of differential equations, Nauka, Moscow, 1978. English transl., Academic Press, New York, (1982).
[8] B. J. Cantwell, Introduction to Symmetry Analysis, Cambridge Texts in Applied Mathematics, Cambridge University Press, (2002).
[9] H. Stephani, Differential equations: their solution using symmetries, Cambridge University Press, 1989. DOI: https://doi.org/10.1017/CBO9780511599941
[10] G. Wang, K. Yang, H. Gu, F. Guan, A. Kara, A (2+ 1)-dimensional sine-gordon and sinh-gordon equations with symmetries and kink wave solutions, Nuclear Physics B 953 (2020) 114956. DOI 10.1016/j.nuclphysb.2020.114956. DOI: https://doi.org/10.1016/j.nuclphysb.2020.114956
[11] Wang, A. Kara, A (2+ 1)-dimensional kdv equation and mkdv equation: symmetries, group invariant solutions and conservation laws, Physics Letters A 383 (8) (2019) 728-731. DOI 10.1016/j.physleta.2018.11.040.DOI: https://doi.org/10.1016/j.physleta.2018.11.040
[12] G. Wang, Y. Liu, Y. Wu, X. Su, Symmetry analysis for a seventh-order generalized kdv equation and its fractional version in fluid mechanics, Fractals 28 (03) (2020) 2050044. DOI: https://doi.org/10.1142/S0218348X20500449
[13] W. Hu, Z. Wang, Y. Zhao, Z. Deng, Symmetry breaking of infinite- dimensional dynamic system, Applied Mathematics Letters 103 (2020) 106207. DOI: https://doi.org/10.1016/j.aml.2019.106207
[14] M. N. Ali, A. R. Seadawy, S. M. Husnine, Lie point symmetries, conservation laws and exact solutions of (n+1)-dimensional modified zakharov-kuznetsov equation describing the waves in plasma physics, Pramana 91 (4) (2018) 1-9. DOI: https://doi.org/10.1007/s12043-018-1614-1
[15] M. N. Ali, A. R. Seadawy, S. M. Husnine, Lie point symmetries ex- act solutions and conservation laws of perturbed zakharov-kuznetsov equation with higher-order dispersion term, Modern Physics Letters A 34 (03) (2019) 1950027. DOI: https://doi.org/10.1142/S0217732319500275
[16] R. Seadawy, M. N. Ali, S. M. Husnine, S. Noor, Conservation laws and optical solutions of the resonant nonlinear schrödinger's equation with parabolic nonlinearity, Optik 225 (2021) 165762. DOI: https://doi.org/10.1016/j.ijleo.2020.165762
[17] Y. S. Özkan, E. Yaşar, A. R. Seadawy, A third-order nonlinear schrödinger equation: the exact solutions, group-invariant solutions and conservation laws, Journal of Taibah University for Science 14 (1) (2020) 585-597. DOI: https://doi.org/10.1080/16583655.2020.1760513
[18] S. Wael, A. R. Seadawy, O. EL-Kalaawy, S. Maowad, D. Baleanu, Sym- metry reduction, conservation laws and acoustic wave solutions for the extended zakharov-kuznetsov dynamical model arising in a dust plasma, Results in Physics 19 (2020) 103652. DOI: https://doi.org/10.1016/j.rinp.2020.103652
[19] Liènard, Etude des oscillations entretènues, Revue gènèrale de l'èlectricitè 23 (1928) 901-912.
[20] N. Levinson, O. K. Smith, A general equation for relaxation oscillations, Duke Mathematical Journal 9 (2) (1942) 382-403. DOI: https://doi.org/10.1215/S0012-7094-42-00928-1
[21] E. Cheb-Terrab, L. Duarte, L. Mota, Computer algebra solving of second order odes using symmetry methods, Computer Physics Communications 108 (1998) 90-114. DOI: https://doi.org/10.1016/S0010-4655(97)00132-X
[22] G. Loaiza, Y. Acevedo, O. M.L Duque, D. A. G. Hernández, Lie algebra classification, conservation laws, and invariant solutions for a generaliza-
tion of the levinson-smith equation, International Journal of Differential Equations (2021) 1-11. DOI: https://doi.org/10.1155/2021/6628243
[23] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, (1986). DOI: https://doi.org/10.1007/978-1-4684-0274-2
[24] P. Hydon, D. Crighton, Symmetry methods for differential equations: A beginner's guide, Cambridge Texts in Applied Mathematics, Cambridge University Press, (2000). DOI: https://doi.org/10.1017/CBO9780511623967
[25] Z. Hussain, Optimal system of subalgebras and invariant solutions for the Black-Scholes equation, Blekinge Institute of Technology, (2009).
[26] G. Zewdie, Lie simmetries of junction conditions for radianting stars, University of KwaZulu-Natal, (2011).
[27] M. C. Nuccci, P. G. L. Leach, An old method of jacobi to find lagrangians, Journal of Nonlinear Mathematical Physics (2009).
[28] M. Gelfand, S. V. Fomin, Calculus of variations, Dover Publications, USA" 2000.
[29] Humphreys, Introduction to Lie Algebras and Representation Theory, Springer New York, NY, 1972. DOI: https://doi.org/10.1007/978-1-4612-6398-2
[30] G. M. Mubarakzyanov, Classification of real structures of lie algebras of fifth order, Izv. Vyssh. Uchebn. Zaved 3 (1) (1963) 114-123.
Descargas
-
Vistas(Views): 328
- PDF (English) Descargas(Downloads): 125
- HTML Descargas(Downloads): 7
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Scientia et Technica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor y licencias
La revista es de acceso abierto gratuito y sus artículos se publican bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial-Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
Los autores de un artículo aceptado para publicación cederán la totalidad de los derechos patrimoniales a la Universidad Tecnológica de Pereira de manera gratuita, teniendo en cuenta lo siguiente: En caso de que el trabajo presentado sea aprobado para su publicación, los autores deben autorizar de manera ilimitada en el tiempo, a la revista para que pueda reproducirlo, editarlo, distribuirlo, exhibirlo y comunicarlo en cualquier lugar, ya sea por medios impresos, electrónicos, bases de datos, repositorios, discos ópticos, Internet o cualquier otro medio requerido.
Los cedentes mediante contrato CESIÓN DE DERECHOS PATRIMONIALES declaran que todo el material que forma parte del artículo está totalmente libre de derechos de autor de terceros y, por lo tanto, se hacen responsables de cualquier litigio o reclamación relacionada o reclamación relacionada con derechos de propiedad intelectual, exonerando de toda responsabilidad a la Universidad Tecnológica de Pereira (entidad editora) y a su revista Scientia et Technica. De igual forma, los autores aceptan que el trabajo que se presenta sea distribuido en acceso abierto gratuito, resguardando los derechos de autor bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial- Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
https://creativecommons.org/licenses/by-nc-sa/4.0/
A los autores, la revista Scientia et Technica tiene la obligación de respetarle los derechos morales (artículo 30 de la Ley 23 de 1982 del Gobierno Colombiano) que se les debe reconocen a estos la paternidad de la obra, el derecho a la integridad y el derecho de divulgación. Estos no se pueden ceder ni renunciar.