Lie algebra classification, conservation laws and invariant solutions for the a particular case of the generalized Levinson-Smith equation


Authors

DOI:

https://doi.org/10.22517/23447214.24960

Keywords:

Invariant solutions, Lie symmetry group, Optimal system, Lie algebra classification, Variational symmetries, Conservation laws, Noether’s theorem

Abstract

In this study, we examine a specific instance of the generalized Levinson-Smith equation, which is linked to the Liènard equation and holds significant importance from the perspectives of physics, mathematics, and engineering. This underlying equation has practical applications in mechanics and nonlinear dynamics and has been extensively explored in the qualitative scheme. Our approach involves applying the Lie group method to this equation. By doing so, we derive the optimal generating operators for the system that pertain to the specific instance of the generalized Levinson-Smith equation. These operators are then used to define all invariant solutions associated with the equation. In addition, we demonstrate the variational symmetries and corresponding conservation laws using Noether's theorem. Finally, we categorize the Lie algebra related to the given equation.

Downloads

Download data is not yet available.

References

[1] S. Lie, Theorie der transformationsgruppen, Mathematische Annalen 2 (1970).

[2] E. Noether, Invariante variationsprobleme. nachrichten der königlichen gessellschaft der wissenschaften. mathematisch-physikalishe klasse, Transport Theory and Statistical Physics (1918) 183-207.

[3] N. H. Ibragimov, CRC handbook of Lie group analysis of differential equations, Vol. 3, CRC press, 1995.

[4] S. Dimas, D. Tsoubelis, Sym: A new symmetry-finding package for mathematica, in: Proceedings of the 10th international conference in modern group analysis, University of Cyprus Press, 2004, pp. 64-70.

[5] Y. Ruo-Xia, L. Sen-Yue, A maple package to compute lie symmetry groups and symmetry reductions of (1+ 1)-dimensional nonlinear sys- tems, Chinese Physics Letters 25 (6) (2008) 1927. DOI: https://doi.org/10.1088/0256-307X/25/6/002

[6] G. Bluman, S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences (81), Springer, New York, (1989).DOI: https://doi.org/10.1007/978-1-4757-4307-4

[7] L. Ovsyannikov, Group analysis of differential equations, Nauka, Moscow, 1978. English transl., Academic Press, New York, (1982).

[8] B. J. Cantwell, Introduction to Symmetry Analysis, Cambridge Texts in Applied Mathematics, Cambridge University Press, (2002).

[9] H. Stephani, Differential equations: their solution using symmetries, Cambridge University Press, 1989. DOI: https://doi.org/10.1017/CBO9780511599941

[10] G. Wang, K. Yang, H. Gu, F. Guan, A. Kara, A (2+ 1)-dimensional sine-gordon and sinh-gordon equations with symmetries and kink wave solutions, Nuclear Physics B 953 (2020) 114956. DOI 10.1016/j.nuclphysb.2020.114956. DOI: https://doi.org/10.1016/j.nuclphysb.2020.114956

[11] Wang, A. Kara, A (2+ 1)-dimensional kdv equation and mkdv equation: symmetries, group invariant solutions and conservation laws, Physics Letters A 383 (8) (2019) 728-731. DOI 10.1016/j.physleta.2018.11.040.DOI: https://doi.org/10.1016/j.physleta.2018.11.040

[12] G. Wang, Y. Liu, Y. Wu, X. Su, Symmetry analysis for a seventh-order generalized kdv equation and its fractional version in fluid mechanics, Fractals 28 (03) (2020) 2050044. DOI: https://doi.org/10.1142/S0218348X20500449

[13] W. Hu, Z. Wang, Y. Zhao, Z. Deng, Symmetry breaking of infinite- dimensional dynamic system, Applied Mathematics Letters 103 (2020) 106207. DOI: https://doi.org/10.1016/j.aml.2019.106207

[14] M. N. Ali, A. R. Seadawy, S. M. Husnine, Lie point symmetries, conservation laws and exact solutions of (n+1)-dimensional modified zakharov-kuznetsov equation describing the waves in plasma physics, Pramana 91 (4) (2018) 1-9. DOI: https://doi.org/10.1007/s12043-018-1614-1

[15] M. N. Ali, A. R. Seadawy, S. M. Husnine, Lie point symmetries ex- act solutions and conservation laws of perturbed zakharov-kuznetsov equation with higher-order dispersion term, Modern Physics Letters A 34 (03) (2019) 1950027. DOI: https://doi.org/10.1142/S0217732319500275

[16] R. Seadawy, M. N. Ali, S. M. Husnine, S. Noor, Conservation laws and optical solutions of the resonant nonlinear schrödinger's equation with parabolic nonlinearity, Optik 225 (2021) 165762. DOI: https://doi.org/10.1016/j.ijleo.2020.165762

[17] Y. S. Özkan, E. Yaşar, A. R. Seadawy, A third-order nonlinear schrödinger equation: the exact solutions, group-invariant solutions and conservation laws, Journal of Taibah University for Science 14 (1) (2020) 585-597. DOI: https://doi.org/10.1080/16583655.2020.1760513

[18] S. Wael, A. R. Seadawy, O. EL-Kalaawy, S. Maowad, D. Baleanu, Sym- metry reduction, conservation laws and acoustic wave solutions for the extended zakharov-kuznetsov dynamical model arising in a dust plasma, Results in Physics 19 (2020) 103652. DOI: https://doi.org/10.1016/j.rinp.2020.103652

[19] Liènard, Etude des oscillations entretènues, Revue gènèrale de l'èlectricitè 23 (1928) 901-912.

[20] N. Levinson, O. K. Smith, A general equation for relaxation oscillations, Duke Mathematical Journal 9 (2) (1942) 382-403. DOI: https://doi.org/10.1215/S0012-7094-42-00928-1

[21] E. Cheb-Terrab, L. Duarte, L. Mota, Computer algebra solving of second order odes using symmetry methods, Computer Physics Communications 108 (1998) 90-114. DOI: https://doi.org/10.1016/S0010-4655(97)00132-X

[22] G. Loaiza, Y. Acevedo, O. M.L Duque, D. A. G. Hernández, Lie algebra classification, conservation laws, and invariant solutions for a generaliza-

tion of the levinson-smith equation, International Journal of Differential Equations (2021) 1-11. DOI: https://doi.org/10.1155/2021/6628243

[23] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, (1986). DOI: https://doi.org/10.1007/978-1-4684-0274-2

[24] P. Hydon, D. Crighton, Symmetry methods for differential equations: A beginner's guide, Cambridge Texts in Applied Mathematics, Cambridge University Press, (2000). DOI: https://doi.org/10.1017/CBO9780511623967

[25] Z. Hussain, Optimal system of subalgebras and invariant solutions for the Black-Scholes equation, Blekinge Institute of Technology, (2009).

[26] G. Zewdie, Lie simmetries of junction conditions for radianting stars, University of KwaZulu-Natal, (2011).

[27] M. C. Nuccci, P. G. L. Leach, An old method of jacobi to find lagrangians, Journal of Nonlinear Mathematical Physics (2009).

[28] M. Gelfand, S. V. Fomin, Calculus of variations, Dover Publications, USA" 2000.

[29] Humphreys, Introduction to Lie Algebras and Representation Theory, Springer New York, NY, 1972. DOI: https://doi.org/10.1007/978-1-4612-6398-2

[30] G. M. Mubarakzyanov, Classification of real structures of lie algebras of fifth order, Izv. Vyssh. Uchebn. Zaved 3 (1) (1963) 114-123.

Downloads

Published

2023-06-30

How to Cite

Acevedo Agudelo, Y. A., Loaiza Ossa, G. I., Londoño Duque, O. M. ., & García Hernández, D. A. . (2023). Lie algebra classification, conservation laws and invariant solutions for the a particular case of the generalized Levinson-Smith equation. Scientia Et Technica, 28(02). https://doi.org/10.22517/23447214.24960

Issue

Section

Ciencias Básicas