Construction of a prototype Geiger Müller counter as dosimetric support in ionizing radiation monitoring


Authors

DOI:

https://doi.org/10.22517/23447214.24569

Keywords:

Dosimetry, Geiger Müller Counters, Ionizing Radiation, Radiological Protection.

Abstract

In radiological protection, it is important to measure the entry dose to the skin as a direct dosimetric indicator or as a base data for a subsequent calculation of the effective dose or equivalent dose. Geiger Counters are particle and ionizing radiation detectors that emit different radiation sources. They are used as environmental dosimeters, measuring the equivalent dose rate in air at key points in exposed and unexposed areas in radiology services. This article shows the construction of a Geiger Müller counter from the use of open source technologies such as the Arduino, these systems allow the integration of different applications at very affordable costs, easy programming and assembly, the device not only allows measurement radiation dose perceived in conventional radiology areas, but also has a thermo-hygrometer capturing two extra fundamental variables for monitoring temperature and relative humidity of the equipment operating environment, in its configuration the prototype performs measurements remotely and in real time, without exposing the professional who performs the monitoring; With the location of the device in the right place, said measurement is transmitted to be viewed from any computer or mobile device, also through sending to viewing platforms, having the freedom to carry out continuous monitoring, storing said information to keep track strict in the management of emissions in the rooms where the different radiological equipment operates.

Downloads

Download data is not yet available.

Author Biography

Liceth Perez Rendon, Fundación Universitaria del Área Andina

Docente

Departamento de Ciencias Basicas

References

I. Castro-volio, “Indicadores citogenéticos para la identificación de exposición a radiación ionizante en humanos,” Acta Med. Costarric., vol. 55, no. 3, pp. 110–117, 2013, Accessed: Sep. 02, 2019. [Online]. Available: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0001-60022013000300002.

L. R. Arias, J. Uribe, and C. Resumen, “El Contador Geiger como Herramienta en la Enseñanza del Concepto de Radiación,” vol. 2, pp. 1–3, 2007.

M. Crispín et al., “Quantification of the absorbed doses by means of dosimetry thermoluminiscent in dental radiology,” Rev. Odontológica Mex., vol. 14, no. 4, pp. 231–236, 2010, Accessed: Sep. 02, 2019. [Online]. Available: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=25289.

SIEVERT, “Institut de Radioprotection et de Surete Nucleaire.” https://www.sievert-system.org/ (accessed Dec. 01, 2018).

M. Donya, M. Radford, A. Elguindy, D. Firmin, and H. Magdi, “Radiation in medicine : Origins, risks and aspirations,” Glob. Cardiol. Sci. Pract., vol. 2014, no. 4, p. 57, 2014.

P. de las N. U. para el M. Ambiente, Radiación efectos y fuentes. .

ICRP, “International Commission on Radiological Protection.” http://www.icrp.org/ (accessed Dec. 01, 2018).

ICRU, “International Commission on Radiation Units and Measurements (ICRU).” https://icru.org/ (accessed Dec. 01, 2018).

UNSCEAR, “United Nations Scientific Committee on the Effects of Atomic Radiation.” http://www.unscear.org/ (accessed Dec. 01, 2018).

IAEA, “Organismo Internacional de Energía Atómica | Átomos para la paz y el desarrollo.” https://www.iaea.org/es (accessed Dec. 01, 2018).

D. Ginzburg, “Ionisation chamber for measurement of pulsed photon radiation fields,” Radiat. Prot. Dosimetry, vol. 174, no. 3, pp. 297–301, 2017, doi: 10.1093/rpd/ncw145.

O. García, A. I. Lamadrid, L. Morera, and T. Mandina, “Introducción y desarrollo de la dosimetría biológica en Cuba,” Panor. Nucl., vol. 37, pp. 49–53, 2005, [Online]. Available: http://files.sld.cu/chernobil/files/2009/05/introduccion-y-desarrollo-en-la-dosimetria-biologica-en-cuba.pdf.

J. Azpeitia Armán and J. P. Domingo, Manual para técnico superior en imagen para el diagnóstico y medicina nuclear. Madrid: Editorial Médica Panamericana, 2016.

G. Peretti, E. Romero, M. ; Cejas, and C. Marqués, “Diseño De Un Contador Geiger Con Capacidad De Autoverificación Integrada,” [Online]. Available: http://www.iberchip.net/VII/cdnav/pdfp/p7.pdf.

S. Korff, “How the Geiger Counter started to crackle : Electrical counting methods in early radioactivity research,” Ann. Phys., vol. 525, no. 6, pp. 88–92, 2013, doi: 10.1002/andp.201300726.

C. Pham, “Communication performances of IEEE 802.15.4 wireless sensor motes for data-intensive applications: A comparison of WaspMote, Arduino MEGA, TelosB, MicaZ and iMote2 for image surveillance,” J. Netw. Comput. Appl., vol. 46, pp. 48–59, 2014, doi: 10.1016/j.jnca.2014.08.002.

Downloads

Published

2021-06-30

How to Cite

Rendon, L. P. (2021). Construction of a prototype Geiger Müller counter as dosimetric support in ionizing radiation monitoring. Scientia Et Technica, 26(2), 246–253. https://doi.org/10.22517/23447214.24569

Issue

Section

Bioingeniería