Toughness enhancement of low carbon steel through bainitic transformation


Authors

DOI:

https://doi.org/10.22517/23447214.25161

Keywords:

Toughness, Charpy impact test, dual-phase steel, bainitic transformation.

Abstract

This study investigates the effect of continuous cooling treatment on the impact toughness and ductile-brittle transition temperature of a low carbon ferrite-pearlite dual-phase steel.
Impact testing was performed according to ASTM E23 at temperatures ranging from -60ºC to 90ºC. The results indicate a significant increase in toughness of approximately 64% and a
reduction in the ductile-brittle transition temperature from 50ºC in the as-received condition to 0ºC after heat treatment. These changes were analyzed through microstructural examination and fractographic analysis. A bainitic transformation was observed,
leading to microstructural refinement and an associated toughness improvement. Additionally, a change in fracture surface morphology was noted in the heat-treated steel, as the bainitic transformation resulted in an increased ductile fracture area across the tested temperature range.

Downloads

Download data is not yet available.

Author Biography

Rodolfo, Universidad Nacional de Colombia, Sede Bogotá.

Profesor Asociado, Departamento de Ingeniería Mecánica y Mecatrónica Grupo Investigación: Innovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM).

References

Krauss, G. Steels: processing, structure, and performance, 1 ed. Ohio, ASM International, 2000.

Hertzberg, R., Vinci, R. and Hertzberg, J. Deformation and fracture mechanics of engineering materials, 4 ed. Hoboken (NJ), Wiley, 2013.

Dieter, G., Mechanical Metallurgy, SI ed. Singapore, McGraw-Hill, 1988.

Shi, K., Hou, H., Chen, J., Kong, L., Zhang, H. and Li, J. Effect of Bainitic Packet Size Distribution on Impact Toughness and its Scattering in the Ductile-Brittle Transition Temperature Region of Q&T Mn-Ni-Mo Bainitic Steels. Steel Research International, v. 87, n. 2, pp. 165-172, Feb. 2016. https://doi.org/10.1002/srin.201400596

API 571, Damage Mechanisms Affecting Fixed Equipment in the Refining Industry, 2 ed. 2011

Lees, F. and Mannan, S. Lees' Loss Prevention in the Process Industries, 4 ed. Oxford, Butterworth-Heinemann, 2012.

Benac, D., Cherolis, N. and Wood, D. Managing Cold Temperature and Brittle Fracture Hazards in Pressure Vessels. Journal of Failure Analysis and Prevention, v. 16, pp. 55-66, Jan. 2016. https://doi.org/10.1007/s11668-015-0052-3

Sung, H., Shin, S., Hwang, B., Lee, C., Kim, N. and Lee, S. Effects of carbon equivalent and cooling rate on tensile and Charpy impact properties of high-strength bainitic steels. Materials Science and Engineering: A, v. 530, pp. 530-538, Dec. 2011. https://doi.org/10.1016/j.msea.2011.10.015

Saedi, N. and Ekrami, A. Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels. Materials Science and Engineering: A, v. 523, n. 1-2, pp. 125-129, Oct. 2009. https://doi.org/10.1016/j.msea.2009.06.057

Avendaño-Rodríguez, Avendaño-Rodríguez DF, Rodriguez-Baracaldo R, Weber S, Mujica-Roncery L. Damage Evolution and Microstructural Fracture Mechanisms Related to Volume Fraction and Martensite Distribution on Dual-Phase Steels. Steel Research International 2022;n/a(n/a):2200460

Dhua, S., Sarkar, P., Saxena, A. and Jha, B. Development of Fine-Grained, Low-Carbon Bainitic Steels with High Strength and Toughness Produced Through the Conventional Hot-Rolling and Air-Cooling. Metallurgical and Materials Transactions A, v. 47, n. 12, pp. 6224-6236, Dec. 2016. https://doi.org/10.1007/s11661-016-3720-3

Rodriguez-Galeano, K., Rodriguez-Baracaldo, R. and Mestra-Rodriguez, A. Cabrera-Marreno, J. and Olaya-Florez, J. Influence of boron content on the fracture toughness and fatigue crack propagation kinetics of bainitic steels. Theoretical and Applied Fracture Mechanics, v. 86, pp. 351-360, Sep. 2016. https://doi.org/10.1016/j.tafmec.2016.09.010

Zhang, T., Wang, L., Wang, Y., Hu, J., Di, H. and Xu, W. Tailoring bainitic transformation and enhancing mechanical properties of carbide-free bainitic steel via high-temperature ausforming. Materials Science and Engineering: A, v. 852, 143677, Sep. 2022. https://doi.org/10.1016/j.msea.2022.143677

Reip, C., Henning, W., Hagmann, R. Sabrudin, B., Susanta, G. and Lee, W. Thin slab processing of acicular ferrite steels with high toughness. In: Rio Pipeline Conference & Exposition, Rio de Janeiro, Brazil, 2005.

Wang, K., Hu, F., Zhou, S., Isayev, O., Yershov, S., Zhang, Z. and Wu, K. Ultrahigh impact toughness achieved in high strength bainitic ferrite/retained austenite lamellar steels below Mf temperature. Materials Letters, v. 324, 132517, Oct. 2022. https://doi.org/10.1016/j.matlet.2022.132517

Saedi, N. and Ekrami, A. Impact properties of tempered bainite–ferrite dual phase steels. Materials Science and Engineering: A, v. 527, n. 21-22, pp. 5575-5581, Aug. 2010. https://doi.org/10.1016/j.msea.2010.05.015

Basiruddin, M., Alam, I. and Chakrabarti, D. The role of fibrous morphology on the Charpy impact properties of low carbon ferrite-bainite dual phase steel. Materials Science and Engineering: A, v. 716, pp. 208-219, Feb. 2018. https://doi.org/10.1016/j.msea.2018.01.041

ASTM E23-24. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM E112-24. Standard Test Methods for Determining Average Grain Size. ASTM International, West Conshohocken, PA, 2013, www.astm.org

Vander Voort, G. ASM Handbook, Volume 09 - Metallography and Microstructures. USA, ASM International, 2004.

Zhou, M., Xu, G., Tian, J., Hu, H. and Yian, Q. Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition. Metals, v. 7, n. 7, 263, Jul. 2017. https://doi.org/10.3390/met7070263

Porter, D. and Easterling, K. Phase transformations in metals and alloys, 2 ed. UK, Springer-Science+Business Media, 1992.

Bhadeshia, H. Thermodynamic analysis of isothermal transformation diagrams. Metal Science, v. 16, n. 3, pp. 159-166, 1982. https://doi.org/10.1179/030634582790427217

Vander Voort, G. Atlas of time-temperature diagrams for irons and steels. USA, ASM International, 1991.

Cubides-Herrera, C., Villalba-Rondon, D. and Rodriguez-Baracaldo, R. Charpy impact toughness and transition temperature in ferrite – perlite steel. Scientia et Technica, v. 24, n. 2, pp. 200-204, Jun. 2019. http://dx.doi.org/10.22517/23447214.19971

Ibrahim, O. Comparison of Impact Properties for Carbon and Low Alloy Steels. Journal of Materials Science & Technology, v. 27, n. 10, pp. 931-936, Oct. 2011. https://doi.org/10.1016/S1005-0302(11)60166-7

Pickering, F. The structure and properties of bainite in steels. In: Transformation and Hardenability in Steels, Climax Molybdenum Co., pp. 109-132, Michigan, Feb. 1967.

Hu, J. Low-density nanostructured bainitic steel with fast transformation rate and high impact-toughness. Materials letters, v. 261, 127105, Feb. 2020. https://doi.org/10.1016/j.matlet.2019.127105

Chhajed, B., Mishra, K., Singh, K. and Singh, A. Effect of prior austenite grain size on the tensile properties and fracture toughness of nano-structured bainite. Materials Characterizacion, 112214, Aug. 2022. https://doi.org/10.1016/j.matchar.2022.112214

Viafara, C. and Velez, J. Transformación bainítica en aleaciones Fe-C. Ingeniería y Ciencia, v. 1, n. 2, pp. 83-96, Sep. 2005.

Qiao, Z., Liu, Y., Yu, L. and Gao, Z. Formation mechanism of granular bainite in a 30CrNi3MoV steel. Journal of Alloys and Compounds, v. 475, n. 1-2, pp. 560-564, May. 2009. https://doi.org/10.1016/j.jallcom.2008.07.110

Downloads

Published

2024-09-27

How to Cite

Rodolfo, Bolaños-Bernal, S. E., & Monsalve Arias, M. J. (2024). Toughness enhancement of low carbon steel through bainitic transformation. Scientia Et Technica, 29(03), 109–115. https://doi.org/10.22517/23447214.25161