Simulation of the influence of STATCOM on power system losses


Authors

DOI:

https://doi.org/10.22517/23447214.25278

Keywords:

Flexible AC transmission systems, power system modeling, power transmission, reactive power control, static VAr compensators

Abstract

The supply of growing electricity demand is possible through continuous technological advances and the expansion of national and international electrical systems. This scenario could introduce voltage drops and consequent changes in the reactive power flow throughout the electrical network. In order to control these problems, various strategies have been developed as a solution to improve the transport and distribution of electrical energy. One of them is the Flexible Alternating Current Transmission System (FACTS), and more specifically the STATic synchronous COMpensator (STATCOM). This paper investigates the influence and effectiveness of STATCOM to mitigate the losses in the transmission lines and its impacts on bus voltage drops. The simulations are performed using the software DIgSILENT PowerFactory and the results showed that STATCOM reduces the power system losses in an interval of 23.86% until 32.86%, and in addition, the STATCOM decreases the annual energy cost by 7.82% in the implemented test case.

Downloads

Download data is not yet available.

Author Biographies

Joseph Sosapanta Salas, Institución Universitaria Pascual Bravo

was born in El Tambo, Nariño, Colombia in 1990. He received the degree in electrical engineering from National University of Colombia, in 2014 and the degree Master in Electrical Engineering from the same university in 2023. He also received the MBA degree in 2021. Currently, the is a full-time research professor at Institución Universitaria Pascual Bravo. His research interest include power systems and renewable energy.

Miyerladis Macías Gómez, Institución Universitaria Pascual Bravo

was born in Medellín, Antioquia, Colombia. She received a degree in electrical technology from the Institución Universitaria Pascual Bravo. She is currently studying for a B.Sc. degree in Electrical Engineering from the same university. His research interests include Internet of Things applications, processing automatization, and control in electrical systems.

References

[1].Kogan and D. Bondorevsky, “La infraestructura en el desarrollo de américa latina,” Economía y desarrollo, vol. 156, no. 1, pp. 168–186, 2016.

[2].S. Abhinav and B. C. Pal, Dynamic estimation and control of power systems. Academic Press, 2018.

[3] M. Eremia, C.-C. Liu, and A.-A. Edris, Advanced solutions in power systems: HVDC, FACTS, and Artificial Intelligence. John Wiley & Sons, 2016. DOI: https://doi.org/10.1002/9781119175391

[4] A. Pillay, S. P. Karthikeyan, and D. Kothari, “Congestion management in power systems–a review,” International Journal of Electrical Power & Energy Systems, vol. 70, pp. 83–90, 2015. DOI: https://doi.org/10.1016/j.ijepes.2015.01.022

[5] S.-H. Song, J.-U. Lim, and S.-I. Moon, “Installation and operation of facts devices for enhancing steady-state security,” Electric Power Systems Research, vol. 70, no. 1, pp. 7–15, 2004. DOI: https://doi.org/10.1016/j.epsr.2003.11.009.

[6] S. Rahimzadeh and M. T. Bina, “Looking for optimal number and placement of facts devices to manage the transmission congestion,” Energy conversion and management, vol. 52, no. 1, pp. 437–446, 2011. DOI: https://doi.org/10.1016/j.enconman.2010.07.019

[7] S. Thangalakshmi and P. Valsalal, “Congestion management using hybrid fish bee optimization,” Journal of Theoretical & Applied Information Technology, vol. 58, no. 2, 2013.

[8] M. Mumtaz, S. I. Khan, W. A. Chaudhry, and Z. A. Khan, “Harmonic incursion at the point of common coupling due to small grid-connected power stations,” Journal of Electrical Systems and Information Technology, vol. 2, no. 3, pp. 368–377, 2015. DOI: https://doi.org/10.1016/j.jesit.2015.06.005

[9] M. Katira and K. Porate, “Computer simulation of 132/11 kv distribution substation using static var compensator (svc) for voltage enhancement a case study,” in 2009 Second International Conference on Emerging Trends in Engineering & Technology. IEEE, 2009, pp. 521–526. DOI: https://doi.org/10.1109/ICETET.2009.61

[10] S. Hameed and P. Garg, “Improvement of power system stability using genetically optimized svc controller,” International Journal of System Assurance Engineering and Management, vol. 5, no. 4, pp. 475–486, 2014. DOI: https://doi.org/10.1007/s13198-014-0233-6

[11] A. Sode-Yome, N. Mithulananthan, and K. Y. Lee, “Static voltage stability margin enhancement using statcom, tcsc and sssc,” in 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific. IEEE, 2005, pp. 1–6. DOI: https://doi.org/10.1109/TDC.2005.1547141

[12] S. M. Sajjadi, M.-R. Haghifam, and J. Salehi, “Simultaneous placement of distributed generation and capacitors in distribution networks considering voltage stability index,” International Journal of Electrical Power & Energy Systems, vol. 46, pp. 366–375, 2013. DOI: https://doi.org/10.1016/j.ijepes.2012.10.027

[13] S. Sreedharan, T. Joseph, S. Joseph, C. V. Chandran, J. Vishnu, and V. Das, “Power system loading margin enhancement by optimal statcom integration-a case study,” Computers & Electrical Engineering, vol. 81, p. 106521, 2020. DOI: https://doi.org/10.1016/j.compeleceng.2019.106521

[14] S. Abd-Elazim and E. Ali, “Optimal location of statcom in multimachine power system for increasing loadability by cuckoo search algorithm,” International Journal of Electrical Power & Energy Systems, vol. 80, pp. 240–251, 2016. DOI: https://doi.org/10.1016/j.ijepes.2016.01.023

[15] A. S. Siddiqui and T. Deb, “Voltage stability improvement using statcom and svc,” International journal of computer applications, vol. 88, no. 14, 2014. DOI: https://doi.org/10.5120/15424-4070

[16] S. Ratra, R. Tiwari, and K. R. Niazi, “Voltage stability assessment in power systems using line voltage stability index,” Computers & Electrical Engineering, vol. 70, pp. 199–211, 2018. DOI: https://doi.org/10.1016/j.compeleceng.2017.12.046

[17] J. P. Rivera Barrera, “Modelamiento y simulación de dispositivos facts para estudios eléctricos de estado estable,” 2008.

[18] L. V. Agudelo Gallego and L. Ruíz Ochoa, “Identificación de las ventajas, las desventajas y las características de los sistemas de transmisión flexible (facts),” 2008.

[19] O. A. Morfín-Garduño, L. A. Zavala-Rubio, F. Ornelas-Téllez, and R. Ramírez-Betancour, “Compensación de potencia reactiva mediante el control robusto de un statcom en un sistema de potencia,” Ingeniería, investigación y tecnología, vol. 22, no. 3, pp. 0–0, 2021. DOI: https://doi.org/10.22201/fi.25940732e.2021.22.3.020

[20] Empresa de energía de Bogotá S.A.S. E.S.P Colombia, “Impacto del SVC tunal 230 kV en el sistema eléctrico de EEBEN 2015,” 2017. [Online]. Available: https://docplayer.es/114850732-Empresa-de-energia-de-bogota-s-a-e-s-p-colombia-impacto-del-svc-tunal-230-kv-en-el-sistema-electrico-de-eeb-2015-bogota-agosto-de-2017.html

[21] E. P. de Medellín (EPM), “Facts modulares tecnología de la transformación de la red,” 2021. [Online]. Available: https://www.epm.com.co/site/con-la-nueva-tecnologia-d-facts-epm-se-ubica-a-la-vanguardia-electrica-en-america-latina

[22] F. M. Gonzalez-Longatt and J. L. Rueda, PowerFactory applications for power system analysis. Springer, 2014. DOI: https://doi.org/10.1007/978-3-319-12958-7

Downloads

Published

2023-06-30

How to Cite

Sosapanta Salas, J. ., & Macías Gómez, M. (2023). Simulation of the influence of STATCOM on power system losses. Scientia Et Technica, 28(02), 58–64. https://doi.org/10.22517/23447214.25278