Metodología multicriterio basada en ciencia de datos para la selección del modelo óptimo de pronóstico del consumo de energía eléctrica residencial
DOI:
https://doi.org/10.22517/23447214.25335Keywords:
AHP, data science, machine learning, pairwise comparisons, regression, TOPSISAbstract
There is a wide variety of techniques and models for forecasting electrical energy consumption, depending on both the type of user, the forecast horizon, and the resolution of the available data. Likewise, there are different metrics to evaluate the performance of these models. So, in this research an integrated multi-criteria methodology is proposed to select the best forecast model for residential electricity consumption, using the Analytical Hierarchical Process (AHP) to establish the weights of relative importance of the decision criteria, and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to make the selection of the optimal model. The methodology is in turn framed within a data science process, through which the data is extracted, processed, and analyzed, prior to the application of the machine learning algorithms to obtain the forecast models, which will correspond to decision alternatives. The performance metrics in the evaluation phase of the models, and the performance metrics obtained from the forecast phase, are considered as the decision criteria. From the pairwise comparisons technique, it was obtained that the mean absolute percentage error (MAPE) of the prognosis phase was the criterion with the greatest weight of importance, followed by the coefficient of determination R2 and the MAPE of the evaluation phase. From the TOPSIS method, the Multiple Linear Regression model was selected as the optimal forecast model.
Downloads
References
L. L. Grigsby, Power Systems, Boca Raton, FL: CRC Press, 2007.
V. Gupta y S. Pal, «An Overview of Different Types of Load Forecasting Methods and the Factors Affecting the Load Forecasting,» International Journal for Research in Applied Science & Engineering Technology, pp. 729-733. http://doi.org/10.22214/ijraset.2017.4132, 2017.
Y. Badulescu, A.-P. Hameri y N. Cheikhrouhou, «Evaluating demand forecasting models using multi-criteria decision-making approach,» Journal of Advances in Management Research, pp. DOI 10.1108/JAMR-05-2020-0080., 2021.
C. Deina, J. L. Ferreira dos Santos, L. H. Biuk, M. Lizot, A. Converti, H. Valadares Siqueira y F. Trojan, «Forecasting Electricity Demand by Neural Networks and Definition of Inputs by Multi-Criteria Analysis,» Energies, p. https://doi.org/10.3390/en16041712, 2023.
J. V. Jales Melo, G. R. Soares Lira, E. G. Costa, A. F. Leite Neto y I. B. Oliveira, «Short-Term Load Forecasting on Individual Consumers,» Energies, p. https://doi.org/10.3390/en15165856, 2022.
S. Filipova-Petrakieva y V. Dochev, «Short-Term Forecasting of Hourly Electricity Power Demand,» Engineering, Technology & Applied Science Research - Reggresion and Cluster Methods for Short-Term Prognosis, vol. 12, nº 2, pp. 8374-8381, 2022.
G. P. Papaioannou, C. Dikaiakos, A. Dramountanis y P. G. Papaioannou, «Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoothing) and Artificial Intelligence Models (ANN, SVM): Th,» MDPI energies, vol. 9, nº 8, 2016.
S. R. Khan, I. A. Hayder, S. u. Rehman Khan, M. A. Habib, M. Ahmad, S. M. Mohsin, F. A. Khan y K. Mustafa, «Enhanced Machine-Learning Techniques for Medium-Term and Short-Term Electric-Load Forecasting in Smart Grids,» Energies, p. https://doi.org/10.3390/en16010276, 2022.
P. Pełka, «Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods,» Energies, p. https://doi.org/10.3390/en16020827, 2023.
M. A. Hammad, B. Jereb, B. Rosi y D. Dragan, «Methods and Models for Electric Load Forecasting: A Comprehensive Review,» Logistics, Supply Chain, Sustainability and Global Challenges, vol. 11, nº 1, pp. 51-76. doi: 10.2478/jlst-2020-0004., 2020.
F. Eltarabishi, O. H. Omar, I. Alsyouf y M. Bettayeb, «Multi-Criteria Decision Making Methods And Their Applications– A Literature Review,» de Proceedings of the International Conference on Industrial Engineering and Operations Management, Dubai, UAE, 2020.
J. VanderPlas, Python Data Science Handbook - Essential Tools for Working with Data, Sebastopol, CA: O’Reilly Media, Inc., 2017.
D. Cielen, A. D. B. Meysman y M. Ali, Introducing Data Science, Shelter Island, NY: Manning Publications Co., 2016.
Comisión Nacional de Energía de Chile, «Energía Abierta,» 01 Abril 2023. [En línea]. Available: http://energiaabierta.cl/categorias-estadistica/electricidad/?sf_paged=2. [Último acceso: 16 July 2022].
C. Yajure Ramírez, «Uso de algoritmos de aprendizaje automático para analizar datos de energía eléctrica facturada. Caso: Chile 2015 – 2021,» Revista I+D Tecnológico, pp. 17-31. https://doi.org/10.33412/idt.v18.2.3678, 2022.
Dirección General de Aeronáutica Civil de Chile, «DGAC CHILE,» 01 04 2023. [En línea]. Available: https://climatologia.meteochile.gob.cl/application/informacion/fichaDeEstacion/330020. [Último acceso: 01 12 2022].
Instituto Nacional de Estadísticas de Chile, «INE,» 01 04 2023. [En línea]. Available: https://www.ine.gob.cl/estadisticas/economia/indices-de-precio-e-inflacion/indice-de-precios-al-consumidor. [Último acceso: 01 12 2022].
A. Navlani, A. Fandango y I. Idris, Python Data Analysis, Birmingham, UK: Packt Publishing Ltd., 2021.
B. Ratner, Statistical and Machine-Learning Data Mining - Techniques for Better Predictive Modeling and Analysis of Big Data, Boca Raton, FL: CRC Press Taylor & Francis Group, 2017.
D. N. Gujarati y D. C. Porter, Econometría, México, D. F.: McGraw-Hill/Interamericana Editores, S.A. DE C.V., 2010.
S. Makridakis, S. Wheelwright y R. Hyndman, Manual of Forecasting: Methods and Applications, 1997.
A. Kapoor, A. Gulli y S. Pal, Deep Learning with TensorFlow and Keras, Birmingham: Packt Publishing Ltd., 2022.
J. Moolayil, Learn Keras for Deep Neural Networks - A Fast-Track Approach to Modern Deep Learning with Python, Vancouver, BC, Canada: Apress, 2019.
F. Chollet, Deep Learning with Python, Shelter Island, NY: Manning Publications Co., 2018.
J. Brownlee, Deep Learning With Python - Develop Deep Learning Models On Theano And TensorFlow Using Keras, Melbourne, Australia: Machine Learning Mastery, 2016.
J. Arnastauskaite, T. Ruzgas y M. Braženas, «An Exhaustive Power Comparison of Normality Tests,» Mathematics, p. https://doi.org/10.3390/math9070788, 2021.
M. E. Fenner, Machine Learning with Python for Everyone, Boston: Pearson Education, Inc., 2020.
B. K. Gacar y İ. D. Kocakoç, «Regression Analyses or Decision Trees?,» Manisa Celal Bayar University Journal of Social Sciences, pp. 251-260. Doi: 10.18026/cbayarsos.796172., 2020.
R. Muthukrishnan y M. Jamila. S, «Predictive Modeling Using Support Vector Regression,» International Journal of Scientific & Technology Research, pp. 4863-4865., 2020.
A. Ishizaka y P. Nemery, Multi-Criteria Decision Analysis - Methods and Software, West Sussex, United Kingdom: John Wiley & Sons, Ltd, 2013.
M. Velasquez y P. T. Hester, «An Analysis of Multi-Criteria Decision Making Methods,» International Journal of Operations Research, pp. 56-66. http://www.orstw.org.tw/ijor/vol10no2/ijor_vol10_no2_p56_p66.pdf, 2013.
E. Triantaphyllou, B. Shu, S. Nieto Sanchez y T. Ray, «Multi-Criteria Decision Making: An Operations Research Approach,» Encyclopedia of Electrical and Electronics Engineering, pp. 175-186., 1998.
T. L. Saaty, «Decision making with the analytic hierarchy process,» International Journal of Services Sciences, pp. 83-98. https://dx.doi.org/10.1504/IJSSCI.2008.017590, 2008.
J. M. Moreno Jiménez, «El proceso analítico jerárquico (AHP). Fundamentos, metodología, y aplicaciones.,» Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, pp. 28-77, 2002.
B. Sahoo, R. N. Behera y P. K. Pattnaik, «A Comparative Analysis of Multi-Criteria Decision Making Techniques for Ranking of Attributes for e-Governance in India,» International Journal of Advanced Computer Science and Applications, pp. 65-70. https://dx.doi.org/10.14569/IJACSA.2022.0130311, 2022.
J. Papathanasiou y N. Ploskas, Multiple Criteria Decision Aid - Methods, Examples and Python Implementations, Cham, Switzerland: Springer Nature Switzerland AG, 2018.
Downloads
-
Vistas(Views): 223
- PDF Descargas(Downloads): 215
- HTML (Español (España)) Descargas(Downloads): 1
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Scientia et Technica
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyrights
The journal is free open access. The papers are published under the Creative Commons Attribution / Attribution-NonCommercial-NoDerivatives 4.0 International - CC BY-NC-ND 4.0 license. For this reason, the author or authors of a manuscript accepted for publication will yield all the economic rights to the Universidad Tecnológica of Pereira free of charge, taking into account the following:
In the event that the submitted manuscript is accepted for publication, the authors must grant permission to the journal, in unlimited time, to reproduce, to edit, distribute, exhibit and publish anywhere, either by means printed, electronic, databases, repositories, optical discs, Internet or any other required medium. In all cases, the journal preserves the obligation to respect, the moral rights of the authors, contained in article 30 of Law 23 of 1982 of the Government Colombian.
The transferors using ASSIGNMENT OF PATRIMONIAL RIGHTS letter declare that all the material that is part of the article is entirely free of copyright. Therefore, the authors are responsible for any litigation or related claim to intellectual property rights. They exonerate of all responsibility to the Universidad Tecnológica of Pereira (publishing entity) and the Scientia et Technica journal. Likewise, the authors accept that the work presented will be distributed in free open access, safeguarding copyright under the Creative Commons Attribution / Recognition-NonCommercial-NoDerivatives 4.0 International - https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es license.