Design of a linear behavior model for an analog anemometer comparing the methods of least squares and Newton’s linear interpolation by divided differences


Authors

  • Jose Miguel Rodríguez González Tecnológico Nacional de México https://orcid.org/0000-0002-3837-7490
  • J Morán Hernández. Universidad Nacional Autónoma
  • L.L Vargas Oseguera TES campus Valle de Bravo
  • A Terán Soria TES campus Valle de Bravo

DOI:

https://doi.org/10.22517/23447214.25430

Keywords:

Wind speed measurement, anemometer, mathematical model, comparison, standardizing, least squares, Newton’s divided differences

Abstract

This article underscores the importance of accurate wind speed measurements and highlights the necessity of standardizing anemometers using robust mathematical models to
ensure reliable data across a range of fields, including meteorology, wind energy, aviation, and civil engineering. Two classical mathematical modeling methods—the Least Squares
Method and Newton's Divided Differences Method—are presented and compared. The paper evaluates the performance of these methods in anemometer standardization, taking into account their practical applications, limitations, and accuracy under varying experimental conditions. Previous studies demonstrating the efficacy of both methods across different domains are referenced. A methodology is proposed for comparing the two approaches through a controlled wind tunnel experiment using a calibrated digital anemometer under diverse flow conditions. The results will enable researchers and practitioners to select the most appropriate method for their specific needs, thereby enhancing the precision and reliability of wind speed measurements in a wide array of applications. In conclusion, the paper aims to provide a comprehensive analysis of the advantages and limitations of the
Least Squares Method and Newton's Divided Differences Method in anemometer standardization, ultimately contributing to improved measurement quality in various sectors.

Downloads

Download data is not yet available.

References

S. Pindado, J. Cubas y F. Sorribes-Palmer, «The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute,» Sensors, vol. 14, nº 11, pp. 21418-21452, 2014.

L. Mercedes Cúneo, S. Bibiana Cerne y M. P. Llano, «Descripción preliminar de la velocidad y dirección del viento medio mensual en Trelew,» Meteorologica, vol. 44, nº 1, pp. 66-80, 2019.

gaotek, «Applications of Anemometers in Construction Industry,» gaotek, 11 02 2024. [En línea]. Available: https://gaotek.com/applications-of-anemometer-in-the-construction-industry/. [Último acceso: 04 09 2024].

C. Azorín-Molina, J. Asín, T. R. McVicar, L. Minola, G. Zjahng, A. Chen, J. I. López-Moreno, S. M. Vicente-Serrano y D. Chen, «Evaluating anemometer drift: A statistical approach to correct biases in wind,» Atmospheric Research, vol. 203, pp. 175-188, 2018.

N. J. Pacheco-Martínez, C. Juarez y I. Martínez-Carrillo, «Dynamic Stability Analysis Using High-Order Interpolation,» Ingeniería Investigación y Tecnología, vol. 13, nº 4, pp. 451-460, 2012.

H. Zhang, C. Guo, X. Su y C. Zhu, «Measurement Data Fitting Based on Moving Least Squares Method,» Mathematical Problems in Engineering, nº 195023, pp. 1-10, 2015.

J. de Vicente y Oliva y J. M. Sánchez Pérez, «Sobre los ajustes por mínimos cuadrados en metrología,» Revista Española de Metrología, vol. 11, nº 5, pp. 12-22, 2016.

L. Naji Mohammed Tawfiq y I. Najm Abood, «Persons Camp Using Interpolation Method,» de Journal of Physics: Conference Series, IBN AL-HAITHAM FIRST INTERNATIONAL SCIENTIFIC CONFERENCE 2017, Baghdad, Iraq, 2017.

C. Zhang, W. Allafi, Q. Dinh, P. Ascencio y J. Marco, «Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique,» Energy, vol. 142, pp. 678-688, 2018.

W. Dinta Dwi Agung, L. Yakub Fahim, U. Sentagi Sesotya y P. Riza, «Analysis of Vehicle Waiting Time Efficiency Using Webster Method and Newton's Divided Difference: Case Study at Mirota Kampus Intersection, Yogyakarta, Indonesia,» de 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, 2019.

L. A. Cantera Cantera, L. Luna, C. Vargas-Jarillo y R. Garrido, «Parameter Estimation of a Linear Ultrasonic Motor Using the Least Squares of Orthogonal Distances Algorithm,» de 2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Ciudad de México, México, 2019.

T. Gu, Y. Tu, D. Tang, S. Lin y B. Fang, «A trimmed moving total least-squares method for curve and surface fitting,» Measurement Science and Technology, vol. 31, nº 4, pp. 1-8, 2020.

adafruit, «Anemometer Wind Speed Sensor w/Analog Voltage Output,» 09 04 2014. [En línea]. Available: https://www.adafruit.com/product/1733. [Último acceso: 30 08 2024].

Peakmeter, «USB Interface Hand Held Wind Anemometer , Custom Air Flow Velocity Meter,» 17 marzo 2019. [En línea]. Available: https://www.peak-meter.com/china usb_interface_hand_held_wind_anemometer_custom_air_flow_velocity_meter-10766394.html. [Último acceso: 30 08 2024].

S. Chapra y R. Canale, Numerical Methods for Engineers, Eight ed., Somerville, Medford: McGraw Hill, 2020.

D. Yufeng, X. Neng y L. Jun, «Uncertainty analysis of velocity field calibration in wind tunnels based on GUM and MCM,» de The Fifth International Conference on Physics, Mathematics and Statistics 2022, Online, 2022.

A. Ria, A. Catania, P. Bruschi y M. Piotto, «Experimental Evaluation of a 3D-Printed Fluidic System for a Directional Anemometer,» Sensors, vol. 20, nº 15, pp. 1-21, 2020.

Downloads

Published

2024-09-27

How to Cite

Rodríguez González , J. M. ., Morán Hernández., J., Vargas Oseguera, L., & Terán Soria, A. (2024). Design of a linear behavior model for an analog anemometer comparing the methods of least squares and Newton’s linear interpolation by divided differences. Scientia Et Technica, 29(03), 123–131. https://doi.org/10.22517/23447214.25430

Issue

Section

Ciencias Básicas