Evaluation of polymeric coatings applied to a natural fique fiber mesh of a water harvesting fog catcher system


Authors

DOI:

https://doi.org/10.22517/23447214.25756

Keywords:

Fog catchers, Water capture, Natural fiber, Fique, Coatings.

Abstract

One of society's priority needs is acquiring fresh water due to high contamination levels and limited access in areas where this valuable resource is scarce. Non-traditional methods of water acquisition, such as fog catcher systems, are increasingly relevant because of their low cost and versatility. These systems use collection meshes to condense fog microdroplets. The water then undergoes filtration, adsorption, and disinfection processes to ensure its potability. Unfortunately, the materials commonly used in fog catcher meshes are synthetic, making them resistant to degradation. Consequently, natural fibers present a viable alternative for their replacement. However, the hydrophobicity of natural fibers is low, which results in limited water capture. This necessitates the development of new solutions, such as coatings, to enhance water capture efficiency. This article presents an evaluation of various polymeric coatings applied to natural fique fiber meshes installed in fog catchers, focusing on the impact of these coatings on water capture efficiency. Additionally, a mechanical and morphological characterization of the coated meshes was performed to assess their mechanical properties and adhesion. Mechanical characterization was conducted using tensile testing, which revealed improved properties in the epoxy-coated fique mesh system. Morphological analysis, using scanning electron microscopy, showed better adhesion between the epoxy and polyester resins and the natural fiber. Water capture tests conducted both in the field and in the laboratory demonstrated that the fique-epoxy coating is the most effective, increasing water uptake by 124.4% compared to uncoated fique fiber.

Downloads

Download data is not yet available.

References

J. A. Pascual, M. F. Naranjo, R. Payano, y Ojilve Ramon Medrano Perez, «Tecnología para la recolección de agua de niebla», 2011, doi: 10.13140/RG.2.1.4806.7048.

H. Yue, Q. Zeng, J. Huang, Z. Guo, y W. Liu, «Fog collection behavior of bionic surface and large fog collector: A review», Adv. Colloid Interface Sci., vol. 300, p. 102583, feb. 2022, doi: 10.1016/j.cis.2021.102583.

M. Qadir, G. Jiménez, R. Farnum, L. Dodson, y V. Smakhtin, «Fog Water Collection: Challenges beyond Technology», Water, vol. 10, n.o 4, p. 372, mar. 2018, doi: 10.3390/w10040372.

D. V. Carrera-Villacrés, I. C. Robalino, F. F. Rodríguez, W. R. Sandoval, D. L. Hidalgo, y T. Toulkeridis, «An Innovative Fog Catcher System Applied in the Andean Communities of Ecuador», Trans. ASABE, vol. 60, n.o 6, pp. 1917-1923, 2017, doi: 10.13031/trans.12368.

C. A. A. Corredor, V. Buitrago, S. J. D. Ayala, T. Ambiental, K. Y. C. Almeida, y T. Ambiental, «Propuesta De Un Sistema De “Atrapa-Nieblas”, Como Fuente De Agua No Convencional En La Vereda La Fuente, Municipio De Los Santos, Departamento De Santander.», p. 9, 2017.

S. Korkmaz y İ. A. Kariper, «Fog harvesting against water shortage», Environ. Chem. Lett., vol. 18, n.o 2, pp. 361-375, mar. 2020, doi: 10.1007/s10311-019-00950-5.

Y. Cheng et al., «Fog catcher brushes with environmental friendly slippery alumina micro-needle structured surface for efficient fog-harvesting», J. Clean. Prod., vol. 315, p. 127862, sep. 2021, doi: 10.1016/j.jclepro.2021.127862.

S. Zhang, J. Huang, Z. Chen, y Y. Lai, «Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications», Small, vol. 13, n.o 3, p. 1602992, ene. 2017, doi: 10.1002/smll.201602992.

J. Arutchelvi, M. Sudhakar, A. Arkatkar, M. Doble, S. Bhaduri, y P. V. Uppara, «Biodegradation of polyethylene and polypropylene», Indian j biotechnol, p. 15, 2008.

K. L. Pickering, M. G. A. Efendy, y T. M. Le, «A review of recent developments in natural fibre composites and their mechanical performance», Compos. Part Appl. Sci. Manuf., vol. 83, pp. 98-112, abr. 2016, doi: 10.1016/j.compositesa.2015.08.038.

Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, y S. Siengchin, «Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review», Front. Mater., vol. 6, p. 226, sep. 2019, doi: 10.3389/fmats.2019.00226.

A. Ali et al., «Hydrophobic treatment of natural fibers and their composites—A review», J. Ind. Text., vol. 47, n.o 8, pp. 2153-2183, may 2018, doi: 10.1177/1528083716654468.

M. Rajaram, X. Heng, M. Oza, y C. Luo, «Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes», Colloids Surf. Physicochem. Eng. Asp., vol. 508, pp. 218-229, nov. 2016, doi: 10.1016/j.colsurfa.2016.08.034.

Y. Wan, J. Xu, Z. Lian, y J. Xu, «Superhydrophilic surfaces with hierarchical groove structure for efficient fog collection», Colloids Surf. Physicochem. Eng. Asp., vol. 628, p. 127241, nov. 2021, doi: 10.1016/j.colsurfa.2021.127241.

C. M. Regalado y A. Ritter, «The design of an optimal fog water collector: A theoretical analysis», Atmospheric Res., vol. 178-179, pp. 45-54, sep. 2016, doi: 10.1016/j.atmosres.2016.03.006.

S. A. Gómez-Suarez y E. Córdoba-Tuta, «Composite materials reinforced with fique fibers – a review», Rev. UIS Ing., vol. 21, n.o 1, ene. 2022, doi: 10.18273/revuin.v21n1-2022013.

J. de D. Rivera y D. Lopez-Garcia, «Mechanical characteristics of Raschel mesh and their application to the design of large fog collectors», Atmospheric Res., vol. 151, pp. 250-258, ene. 2015, doi: 10.1016/j.atmosres.2014.06.011.

M. R. Sanjay, G. R. Arpitha, L. L. Naik, K. Gopalakrishna, y B. Yogesha, «Applications of Natural Fibers and Its Composites: An Overview», Nat. Resour., vol. 07, n.o 03, pp. 108-114, 2016, doi: 10.4236/nr.2016.73011.

J. I. P. Singh, S. Singh, y V. Dhawan, «Influence of fiber volume fraction and curing temperature on mechanical properties of jute/PLA green composites», Polym. Polym. Compos., vol. 28, n.o 4, pp. 273-284, may 2020, doi: 10.1177/0967391119872875.

J. de D. Rivera y D. Lopez-Garcia, «Mechanical characteristics of Raschel mesh and their application to the design of large fog collectors», Atmospheric Res., vol. 151, pp. 250-258, ene. 2015, doi: 10.1016/j.atmosres.2014.06.011.

M. N. A. M. Taib y N. M. Julkapli, «4 - Dimensional stability of natural fiber-based and hybrid composites», en Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, M. Jawaid, M. Thariq, y N. Saba, Eds., en Woodhead Publishing Series in Composites Science and Engineering. , Woodhead Publishing, 2019, pp. 61-79. doi: https://doi.org/10.1016/B978-0-08-102292-4.00004-7.

L. Vásquez-Ramírez, L. Cieza-León, y D. Cieza-León, «Efficiency of water collection for three types of mesh trappers in rural highlands of the northern highlands of Peru», n.o 3, p. 9, 2020.

M. Rajaram, X. Heng, M. Oza, y C. Luo, «Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes», Colloids Surf. Physicochem. Eng. Asp., vol. 508, pp. 218-229, nov. 2016, doi: 10.1016/j.colsurfa.2016.08.034.

O. Klemm et al., «Fog as a fresh-water resource: overview and perspectives.», Ambio, vol. 41, n.o 3, pp. 221-234, may 2012, doi: 10.1007/s13280-012-0247-8.

-8.

Downloads

Published

2025-04-02

How to Cite

Gómez, S. A., & Córdoba Tuta, E. (2025). Evaluation of polymeric coatings applied to a natural fique fiber mesh of a water harvesting fog catcher system . Scientia Et Technica, 30(01), 7–15. https://doi.org/10.22517/23447214.25756

Issue

Section

Mecánica