Model of an ideal Rankine cycle with reheating in E.E.S


Authors

DOI:

https://doi.org/10.22517/23447214.25773

Keywords:

Isentropic, efficiency, Rankine cycle, regeneration, reheating.

Abstract

In the present study, a comprehensive analysis is carried out on an ideal regenerative Rankine cycle, based on the use of ICT tools for digital transformation in engineering education. The gap addressed in this work relates to the application of technologies to streamline the thermodynamic analysis of complex cycles, which have been rigorously modeled using the Engineering Equation Solver (E.E.S.) software a high-fidelity computational tool widely recognized for its accuracy in solving nonlinear, multivariable thermodynamic systems. The methodological approach adopted involves a detailed evaluation of the isentropic efficiencies of the main cycle components turbines, pump, and heat exchangers enabling a precise determination of the net power output, the rates of thermal energy transfer to and from the heat exchangers, as well as the quantification of the mass flow rates of extracted steam at specific points in the system for regenerative purposes. Additionally, the computational generation of temperature–entropy (T–s) diagrams is integrated, which serve as fundamental tools for the visualization and validation of the thermodynamic processes involved, allowing for the clear identification of each state in the cycle. Based on this graphical representation and the numerical results derived from the model, key thermodynamic properties are determined, such as specific volume at pump suction, entropy at turbine inlet, and enthalpies associated with each energy transformation, in order to quantitatively establish the isentropic efficiency of the devices and their influence on the overall efficiency of the regenerative cycle. This approach enables not only a comprehensive understanding of system behavior but also the identification of improvement opportunities for the energy optimization of advanced thermoelectric cycles.

Downloads

Download data is not yet available.

References

Y. O. Fernández, L. A. V. Fernández, E. G. Suarez, D. A. Villegas, J. N. Gamboa, y T. I. L. Echevarria, “Gestión del conocimiento y tecnologías de la información y comunicación (TICs) en estudiantes de ingeniería mecánica,” Apuntes Universitarios, vol. 10, no. 1, pp. 77–88, 2020. Available: DOI: 10.17162/au.v10i1.419

V. H. Medina-Matute, L. E. Solorzano-Villegas, C. A. Medina-Jiménez, y D. G. V. P. Dimas, “Innovación Educativa para la Enseñanza de la Matemática en Ingeniería,” Rev. Cient. Arbitrada Investig. Comun., Mkt. y Empresa REICOMUNICAR, vol. 7, no. 13 Ed. esp., pp. 2–12, 2024. Available: https://reicomunicar.org/index.php/reicomunicar/article/view/219

D. Mosquera-González, A. Valencia-Arias, M. Benjumea-Arias, y L. Palacios-Moya, “Factores asociados al uso de tecnologías de la información y la comunicación (TIC) en los procesos de aprendizaje de estudiantes de ingeniería,” Formación Universitaria, vol. 14, no. 2, pp. 121–132, 2021. Available: DOI: 10.4067/S0718 50062021000200121.

N. J. Hernández-Fernández, L. Zumalacárregui-de Cárdenas, y O. Pérez-Ones, "Simulación de condiciones de operación y fluidos de trabajo para ciclos Rankine orgánicos," *Rev. Investig. Desarro. Innov.*, vol. 10, no. 2, pp. 349–358, 2020. Available: https://doi.org/10.19053/20278306.v10.n2.2020.10213.

S. A. Vásquez, A. P. Barturén, y F. M. Carbajal, "Aplicación del simulador Aspen HYSYS en la resolución de problemas del ciclo Rankine regenerativo con recalentamiento intermedio," *Inf. Tecnol.*, vol. 31, no. 3, pp. 199–208, 2020. Available: http://dx.doi.org/10.4067/S0718-07642020000300199.

Y. A. Çengel y M. A. Boles, *Thermodynamics: An Engineering Approach*, 9th ed. New York: McGraw-Hill Education, 2021.

M. A. Ortega Sarceda, *Optimización de la eficiencia de una planta de potencia solar con ciclo Rankine orgánico*, 2022. Available:

http://hdl.handle.net/2183/31764

J. Smith y A. Brown, "Enhancing the efficiency of Rankine cycle with reheat: A review," *Int. J. Energy Res.*, vol. 44, no. 3, pp. 1234–1250, 2020.

R. C. Olivera, J. J. M. Cosgalla, y F. D. Sánchez, "Los métodos experimentales y su importancia en la enseñanza de la ingeniería mecánica como complemento al diseño asistido por computadora," 2021.

L. Johnson y T. Williams, "Impact of reheat on the performance of Rankine cycle: A case study," *Appl. Therm. Eng.*, vol. 150, pp. 250–260, 2019.

N. Zobeiry y K. D. Humfeld, "A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications," *Eng. Appl. Artif. Intell.*, vol. 101, Art. no. 104232, 2021. Available: https://doi.org/10.1016/j.engappai.2021.104232

J. D. Sánchez Más, *Modelización con el software Engineering Equation Solver (EES) para la optimización de una central térmica de un ciclo real de turbina de vapor utilizado en la central nuclear de Cofrentes*, 2016.

Downloads

Published

2025-06-30

How to Cite

Narváez Meza, D. A. (2025). Model of an ideal Rankine cycle with reheating in E.E.S. Scientia Et Technica, 30(02), 89–98. https://doi.org/10.22517/23447214.25773

Issue

Section

Mecánica