A proposal for a fuzzy climate classification index for Colombia

Una propuesta de un índice difuso de clasificación climática para Colombia


Authors

DOI:

https://doi.org/10.22517/23447214.25894

Keywords:

climate change, climate classification, climate, fuzzy logic, temperature

Abstract

This study developed a fuzzy logic-based climate classification index for Colombia, integrating hydroclimatic, air quality, and topographic variables through a three-phase methodology. In Phase 1 (2010-2022), multisource data acquisition processed precipitation (600-8000 mm/year), temperature (14-32°C), humidity (28-95%), PM₂.₅ (6-35 µg/m³), and NO₂ (10-60 ppb) using IDEAM's DHIME portal and NASA Giovanni products, with quality-controlled interpolation. Phase 2 implemented a Mamdani-type fuzzy inference system in FisPro, creating 127 "If-Then" rules through nonlinear correlation analysis (Spearman >0.65) and expert knowledge, using MIN-MAX operators and adaptive weights (0.3 rural/0.5 urban pollution coefficients). Phase 3 geospatial implementation achieved 84.5% cross-validation accuracy (MAE=1.2, RMSE=1.8), generating vulnerability maps (0-10 scale) through QGIS processing. Results revealed extreme climate variability: precipitation gradients (600 mm/year in Riohacha to 8000 mm in Quibdó), urban heat islands (Neiva 30°C vs. Bogotá 16°C), and pollution hotspots (Barranquilla 30 µg/m³ PM₂.₅ vs. Leticia 6 µg/m³). The fuzzy index outperformed traditional methods (Köppen, Thornthwaite) by capturing nonlinear interactions, showing 15% agricultural yield reductions in high-NO₂ zones and identifying vulnerability thresholds for coffee rust outbreaks (>80% humidity) and urban heat stress (85% RH = 41°C felt temperature). The model's adaptive structure effectively addressed Colombia's climatic heterogeneity while overcoming rigid classification limitations, providing a robust tool for climate risk assessment under anthropogenic change scenarios, though future work should incorporate higher-resolution pollution data to reduce the 15% uncertainty in industrial zones.

Downloads

Download data is not yet available.

References

S. Rodriguez-Flores, C. Muñoz-Robles, J. A. Quevedo Tiznado, and P. Julio-Miranda, “Assessment of watershed health, integrating environmental, social, and climate change criteria into a fuzzy logic framework,” Science of the Total Environment, vol. 960, Jan. 2025, doi: 10.1016/j.scitotenv.2024.178316.

F. Dong, S. Wang, and G. Yang, “Comprehensive index of extreme climate risk in China and urban sustainable development,” Chinese Journal of Population Resources and Environment, vol. 23, no. 1, pp. 62–74, Mar. 2025, doi: 10.1016/j.cjpre.2025.01.006.

A. Rojas-Ospina, A. Zuñiga-Collazos, and M. Castillo-Palacio, “Factors influencing environmental sustainability performance: A study applied to coffee crops in Colombia,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 10, no. 3, Sep. 2024, doi: 10.1016/j.joitmc.2024.100361.

C. Vargas et al., “Climate-resilient and regenerative futures for Latin America and the Caribbean,” Futures, vol. 142, Sep. 2022, doi: 10.1016/j.futures.2022.103014.

P. Santibáñez, R. Zamora, J. Franchi, D. Montaner-Fernández, and F. Santibáñez, “Bioclimatic stress index: A tool to evaluate climate change impact on Mediterranean arid ecosystems,” J Arid Environ, vol. 229, Aug. 2025, doi: 10.1016/j.jaridenv.2025.105376.

G. A. Rodríguez, “Retos para enfrentar el cambio climático en Colombia,” Retos para enfrentar el cambio climático en Colombia, 2020, ISBN 9789587845280, p. 1, 2020, Accessed: Oct. 28, 2024. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=8887572

N. Clerici, F. Cote-Navarro, F. J. Escobedo, K. Rubiano, and J. C. Villegas, “Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes,” Science of the Total Environment, vol. 685, pp. 1181–1192, Oct. 2019, doi: 10.1016/j.scitotenv.2019.06.275.

J. Ruíz, O. Vargas, and N. Rodríguez, “Restoration priorities: Integrating successional states and landscape resilience in tropical dry forest compensation projects in Colombia,” Applied Geography, vol. 157, Aug. 2023, doi: 10.1016/j.apgeog.2023.103021.

R. J. Cole, L. K. Werden, F. C. Arroyo, K. M. Quirós, G. Q. Cedeño, and T. W. Crowther, “Forest restoration in practice across Latin America,” Biol Conserv, vol. 294, Jun. 2024, doi: 10.1016/j.biocon.2024.110608.

J. Fajardo-Gonzalez, C. A. K. Lovell, J. Lovell, and H. Edmonds, “Measuring climate risks: A new multidimensional index for global vulnerability and resilience,” Environ Dev, vol. 56, Sep. 2025, doi: 10.1016/j.envdev.2025.101227.

R. Singh et al., “Assessment of climate resilience index: Insight from Murrah buffalo-based livestock production system of Western India,” Agric Syst, vol. 228, Aug. 2025, doi: 10.1016/j.agsy.2025.104390.

S. Turbay, B. Nates, F. Jaramillo, J. J. Vélez, and O. L. Ocampo, “Adaptation to climate variability among the coffee farmers of the watersheds of the rivers Porce and Chinchiná, Colombia,” Investigaciones Geograficas, vol. 85, pp. 95–112, 2014, doi: 10.14350/rig.42298.

P. Rychtecká, P. Samec, and J. Rosíková, “Floodplain forest soil series along the naturally wandering gravel-bed river in temperate submontane altitudes,” Catena (Amst), vol. 222, Mar. 2023, doi: 10.1016/j.catena.2022.106830.

D. Gómez, E. Aristizábal, E. F. García, D. Marín, S. Valencia, and M. Vásquez, “Landslides forecasting using satellite rainfall estimations and machine learning in the Colombian Andean region,” J South Am Earth Sci, vol. 125, May 2023, doi: 10.1016/j.jsames.2023.104293.

F. Ceballos-Sierra and S. Dall’Erba, “The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach,” Agric Syst, vol. 190, May 2021, doi: 10.1016/j.agsy.2021.103126.

J. Romero-Cuéllar, A. Buitrago-Vargas, T. Quintero-Ruiz, and F. Francés, “Simulación hidrológica de los impactos potenciales del cambio climático en la cuenca hidrográfica del río Aipe, en Huila, Colombia,” Ribagua, vol. 5, no. 1, pp. 63–78, Jan. 2018, doi: 10.1080/23863781.2018.1454574.

G. Aruta, F. Ascione, N. Bianco, G. M. Mauro, and F. Villano, “Artificial neural networks to forecast building heating/cooling demand and climate resilience based on envelope parameters and new climatic stress indices,” Journal of Building Engineering, vol. 108, Aug. 2025, doi: 10.1016/j.jobe.2025.112849.

H. A. Arregocés, D. Gómez, and M. L. Castellanos, “Annual and monthly precipitation trends: An indicator of climate change in the Caribbean region of Colombia,” Case Studies in Chemical and Environmental Engineering, vol. 10, Dec. 2024, doi: 10.1016/j.cscee.2024.100834.

M. C. Linares-Rodríguez, N. Gambetta, and M. A. García-Benau, “Climate action information disclosure in Colombian companies: A regional and sectorial analysis,” Urban Clim, vol. 51, Sep. 2023, doi: 10.1016/j.uclim.2023.101626.

C. Villa-Loaiza, I. Taype-Huaman, J. Benavides-Franco, G. Buenaventura-Vera, and J. Carabalí-Mosquera, “Does climate impact the relationship between the energy price and the stock market? The Colombian case,” Appl Energy, vol. 336, Apr. 2023, doi: 10.1016/j.apenergy.2023.120800.

A. Celletti, U. Locatelli, T. Ruggeri, and E. Strickland, “Springer INdAM Series 6 Mathematical Models and Methods for Planet Earth.” [Online]. Available: http://www.springer.com/series/10283

C. Bockstaller, S. Beauchet, V. Manneville, B. Amiaud, and R. Botreau, “A tool to design fuzzy decision trees for sustainability assessment,” Environmental Modelling and Software, vol. 97, pp. 130–144, Nov. 2017, doi: 10.1016/j.envsoft.2017.07.011.

S. Guillaume and B. Charnomordic, “Learning interpretable fuzzy inference systems with FisPro,” Inf Sci (N Y), vol. 181, no. 20, pp. 4409–4427, Oct. 2011, doi: 10.1016/j.ins.2011.03.025.

S. Guillaume and B. Charnomordic, “Fuzzy inference systems: An integrated modeling environment for collaboration between expert knowledge and data using FisPro,” Expert Syst Appl, vol. 39, no. 10, pp. 8744–8755, Aug. 2012, doi: 10.1016/j.eswa.2012.01.206.

M. Pota, M. Esposito, and G. De Pietro, “Likelihood-fuzzy analysis: From data, through statistics, to interpretable fuzzy classifiers,” International Journal of Approximate Reasoning, vol. 93, pp. 88–102, Feb. 2018, doi: 10.1016/j.ijar.2017.10.022.

H. Sarkheil, E. Rostamian, S. Rahbari, and R. Lak, “Developing a novel ecological fuzzy forest health index (FFHI) for Standardizing forest-smart mining using remote sensing techniques,” Environmental and Sustainability Indicators, vol. 26, Jun. 2025, doi: 10.1016/j.indic.2025.100700.

R. Calone et al., “A fuzzy logic evaluation of synergies and trade-offs between agricultural production and climate change mitigation,” J Clean Prod, vol. 442, Feb. 2024, doi: 10.1016/j.jclepro.2024.140878.

G. Narvaez, L. F. Giraldo, M. Bressan, and A. Pantoja, “The impact of climate change on photovoltaic power potential in Southwestern Colombia,” Heliyon, vol. 8, no. 10, Oct. 2022, doi: 10.1016/j.heliyon.2022.e11122.

Y. Xia, J. Wang, Z. Zhang, D. Wei, Z. Cao, and Z. Li, “A wind speed point-interval fuzzy forecasting system based on data decomposition and multiobjective optimizer,” Appl Soft Comput, vol. 165, Nov. 2024, doi: 10.1016/j.asoc.2024.112084.

E. Brazález, H. Macià, G. Díaz, M. T. Baeza_Romero, E. Valero, and V. Valero, “FUME: An air quality decision support system for cities based on CEP technology and fuzzy logic,” Appl Soft Comput, vol. 129, Nov. 2022, doi: 10.1016/j.asoc.2022.109536.

A. Gersnoviez, J. C. Gámez-Granados, M. Cabrera-Fernández, I. Santiago, E. Cañete-Carmona, and M. Brox, “Neuro-fuzzy systems for daily solar irradiance classification and PV efficiency forecasting,” Alexandria Engineering Journal, vol. 79, pp. 21–33, Sep. 2023, doi: 10.1016/j.aej.2023.07.072.

E. Vergara-Vásquez, L. M. Hernández Beleño, T. T. Castrillo-Borja, T. R. Bolaño-Ortíz, Y. Camargo-Caicedo, and A. M. Vélez-Pereira, “Airborne particulate matter integral assessment in Magdalena department, Colombia: Patterns, health impact, and policy management,” Heliyon, vol. 10, no. 16, Aug. 2024, doi: 10.1016/j.heliyon.2024.e36284.

Published

2025-11-12

How to Cite

Popayán Hernández, J. G. (2025). A proposal for a fuzzy climate classification index for Colombia: Una propuesta de un índice difuso de clasificación climática para Colombia. Scientia Et Technica, 30(03). https://doi.org/10.22517/23447214.25894

Issue

Section

Ciencias Ambientales