Pronóstico de las tasas de cambio. una aplicación al yen japonés mediante redes neuronales artificiales
Abstract
En este artículo se muestra la aplicabilidad de las redes neuronales artificiales al mercado de divisas mediante el estudio de la tasa de cambio del Yen japonés con respecto al Dólar americano. En primer lugar se entrena un conjunto de redes neuronales con los datos históricos de la tasa de cambio y los días de la semana; posteriormente se incluyen los seis de los indicadores económicos más importantes que afectan directamente al dólar americano. Se demuestra como la información de estos últimos indicadores mejora considerablemente la capacidad de pronóstico de las redes neuronales.Downloads
Downloads
-
Vistas(Views): 488
- PDF (Español (España)) Descargas(Downloads): 744
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Scientia et technica
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyrights
The journal is free open access. The papers are published under the Creative Commons Attribution / Attribution-NonCommercial-NoDerivatives 4.0 International - CC BY-NC-ND 4.0 license. For this reason, the author or authors of a manuscript accepted for publication will yield all the economic rights to the Universidad Tecnológica of Pereira free of charge, taking into account the following:
In the event that the submitted manuscript is accepted for publication, the authors must grant permission to the journal, in unlimited time, to reproduce, to edit, distribute, exhibit and publish anywhere, either by means printed, electronic, databases, repositories, optical discs, Internet or any other required medium. In all cases, the journal preserves the obligation to respect, the moral rights of the authors, contained in article 30 of Law 23 of 1982 of the Government Colombian.
The transferors using ASSIGNMENT OF PATRIMONIAL RIGHTS letter declare that all the material that is part of the article is entirely free of copyright. Therefore, the authors are responsible for any litigation or related claim to intellectual property rights. They exonerate of all responsibility to the Universidad Tecnológica of Pereira (publishing entity) and the Scientia et Technica journal. Likewise, the authors accept that the work presented will be distributed in free open access, safeguarding copyright under the Creative Commons Attribution / Recognition-NonCommercial-NoDerivatives 4.0 International - https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es license.