Energy apprenticeship in High School Students: Questionnaires validation


Autores/as

DOI:

https://doi.org/10.22517/23447214.25175

Palabras clave:

Mechanical Energy , Semiotic Registers, Validation

Resumen

Este documento hace parte de los resultados de investigación sobre el uso consciente de los registros semióticos en el aprendizaje de la energía mecánica en estudiantes de la escuela media. Por lo tanto, se parte de un desarrollo teórico donde se enmarca el aprendizaje de le energía mecánica desde una perspectiva amplia y que se sustenta en el uso de distintas herramientas semióticas tales como los diagramas y modelos matemáticos. Luego se analizan las posibilidades que brinda la teoría de los registros de representación semiótica de Duval (TRRS) como una alternativa para configurar propuestas de aprendizaje en física. Desde este trabajo se presenta el proceso de validación de dos cuestionarios C1 para evaluar los niveles de reconocimiento de registros semióticos sobre trabajo y energía y C2 para examinar los niveles de comprensión sobre trabajo mecánico. Según los resultados, los instrumentos que se presentan tienen validez de contenido e interna para que se utilicen en el proceso de análisis de los datos en la investigación correspondiente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

J. Solbes, R. Montserrat, and C. Furió, “Desinterés del alumnado hacia el aprendizaje de la ciencia,” Didáctica las ciencias Exp. y Soc., vol. 21, pp. 91–117, 2007, doi: 10.7203/dces..2428.

G. Londoño, J. Solbes, and J. Guisasola, “Aprovechamiento conceptual y actitudinal de las visitas a un parque temático,” Didáctica las ciencias Exp. y Soc., vol. 92, no. 23, pp. 71–92, 2009, doi: 10.7203/dces..2407.

R. Nardi and O. Castiblanco, Didática da Física. 2014.

O. . Tamayo A, “Didáctica de las ciencias: aportes desde la enseñanza, el aprendizaje y las ciencias cognitivas”.

J. Gutierrez-Berraondo, K. Zuza, G. Zavala, and J. Guisasola, “Ideas de los estudiantes universitarios sobre las relaciones trabajo y energía en Mecánica en cursos introductorios de Física,” Rev. Bras. Ensino Fis., vol. 40, no. 1, p. e1403, 2018, doi: 10.1590/1806-9126-RBEF-2017 0131.

A. Yavuz, “On paradigms in physics and physics education,” 2011.

H. Putranta, Jumadi, and I. Wilujeng, “Physics learning by PhET simulation-assisted using problem based learning (PBL) model to improve students’ critical thinking skills in work and energy chapters in MAN 3 Sleman,” Asia-Pacific Forum Sci. Learn. Teach., vol. 20, no. 1, pp. 1–45, 2019.

A. Kohler and B. Chabloz, “Using Signs for Learning and Teaching Physics: From Semiotic Tools to Situations of Misunderstanding,” Intech, p. 13, 2017, [Online]. Available: http://dx.doi.org/10.1039/C7RA00172J%0Ahttps://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in biometrics%0Ahttp://dx.doi.org/10.1016/j.colsurfa.2011.12.014.

K. S. Taber, Progressing science education: Constructing the scientific research programme into the contingent nature of learning science:Building the Protective Belt of the Progressive Research Programme. 2009. doi: 10.1007/978-90-481-2431-2_6.

S. Pohl and F. Cala, “Energía, entropía y religión. Un repaso histórico,” Rev. la Acad. Colomb. ciencias exactas, físicas y Nat., vol. 34, no. 130, pp. 37–52, 2010.

E. Pérez C and N. Carrasco, “Un estudio etimológico de las raices de la energía,” Rev. UIS Humanidades. Vol. 41, No. 2. Julio - diciembre 2013, pp. 13-33, 2013, [Online]. Available: https://revistas.uis.edu.co/index.php/revistahumanidades/article/view/4927/5045

R. Guzmán, “Ciencia, tecnología y sociedad en el siglo XIX: el concepto de energía, su historia y sus significados culturales,” Rev. Humanidades, vol. 36, no. 36, pp. 145–178, 2017, [Online]. Available: http://repositorio.unab.cl/xmlui/handle/ria/7904

E. Hecht, “Understanding energy as a subtle concept: A model for teaching and learning energy,” Am. J. Phys., vol. 87, no. 7, pp. 495–503, 2019, doi: 10.1119/1.5109863.

D. M. Watts, “Some alternative views of energy,” Phys. Educ., vol. 18, no. 5, pp. 213–217, 1983, doi: 10.1088/0031-9120/18/5/307.

J. W. Jewett, “Energy and the Confused Student I: Work,” Phys. Teach., vol. 46, no. 1, pp. 38–43, 2008, doi: 10.1119/1.2823999.

J. W. Jewett, “Energy and the Confused Student II: Systems,” Phys. Teach., vol. 46, no. 2, pp. 81–86, 2008, doi: 10.1119/1.2834527.

J. W. Jewett, “Energy and the Confused Student III: Language,” Phys. Teach., vol. 46, no. 3, pp. 149–153, 2008, doi: 10.1119/1.2840978.

J. W. Jewett, “Energy and the Confused Student IV: A Global Approach to Energy,” Phys. Teach., vol. 46, no. 4, pp. 210–217, 2008, doi: 10.1119/1.2895670.

J. W. Jewett, “Energy and the Confused Student V: The Energy/Momentum Approach to Problems Involving Rotating and Deformable Systems,” Phys. Teach., vol. 46, no. 5, pp. 269 274, 2008, doi: 10.1119/1.2909743.

R. E. Scherr, H. G. Close, and S. B. McKagan, “Intuitive ontologies for energy in physics,” AIP Conf. Proc., vol. 1413, pp. 343–346, 2012, doi: 10.1063/1.3680065.

R. E. Scherr, H. G. Close, E. W. Close, and S. Vokos, “Representing energy. II. Energy tracking representations,” Phys. Rev. Spec. Top. - Phys. Educ. Res., vol. 8, no. 2, 2012, doi: 10.1103/PhysRevSTPER.8.020115.

K. E. Gray, M. C. Wittmann, S. Vokos, and R. E. Scherr, “Drawings of energy: Evidence of the Next Generation Science Standards model of energy in diagrams,” Phys. Rev. Phys. Educ. Res., vol. 15, no. 1, p. 10129, 2019, doi: 10.1103/PhysRevPhysEducRes.15.010129.

P. Pantidos and D. Givry, “Connecting the teaching of mechanical work with the model of energy,” Educ. J. Univ. Patras UNESCO Chair, vol. 3, no. 2, pp. 317–326, 2016, doi: https://doi.org/10.26220/une.2759.

I. Idoyaga, C. N. Moya, and M. G. Lorenzo, “Los gráficos y la pandemia . Reflexiones para la educación científica en tiempos de incertidumbre,” vol. 5, no. 1, pp. 1–18, 2020, [Online]. Available: http://ojs.cfe.edu.uy/index.php/RevEdCsBiol/article/view/656/424

K. S. Tang, “Reassembling curricular concepts: a multimodal approach to the study of curriculum and instruction,” Int. J. Sci. Math. Educ., vol. 9, no. 1, pp. 109–135, 2009, doi: 10.1007/s10763-010-9222-7.

S. Hertting, “Energy Blocks — A Physical Model for Teaching Energy Concepts,” Phys. Teach., vol. 54, no. 1, pp. 31–33, 2016, doi: 10.1119/1.4937969.

R. Duval and A. Sáenz-Ludlow, “Un análisis cognitivo de problemas de comprensión en el aprendizaje de las matemáticas,” in Comprensión y aprendizaje en matemáticas : perspectivas semióticas seleccionadas, vol. 1, no. 2, Universidad Distrital Francisco José de Caldas, 2016, pp. 61–94. Accessed: May 25, 2019. [Online]. Available: http://funes.uniandes.edu.co/12213/

R. Duval, Understanding the mathematical way of thinking - The registers of semiotic representations. 2017. doi: 10.1007/978-3-319-56910-9.

C. Mora, “La Semiótica en la Enseñanza de la Física,” REAMEC-Rede Amaz. Educ. em Ciências e Matemática, 7(3), 126-134., 2019, [Online]. Available: https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/9278/pdf

L. G. de Lima, “The theory of registers of semiotic representation: Contributions to the teaching and learning of physics,” Investig. em Ensino Ciencias, vol. 24, no. 3, pp. 196–221, 2019, doi: 10.22600/1518-8795.ienci2019v24n3p196.

E. Mosquera L and G. Londoño V, “Los Registros Semióticos Triádicos ( RST ) En Contextos Argumentativos Para La Comprensión De La Cinemática En Estudiantes De La Media ( 15 a 16 Años ): Análisis De Casos Múltiples Triadic Semiotic Records ( RST ) In,” Miradas UTP, pp. 31–45, 2021, doi: 10.22517/25393812.24870.

E. M. Lozano, G. L. Villamil, and I. J. Idoyaga, “Los registros semióticos triádicos en la comprensión de las gráficas cinemáticas Triadic semiotic records in understanding kinematic graphs,” Enseñanza la física, vol. 33, no. 2021, pp. 463–469, 2021.

E. Mosquera and G. Londoño, “Construcciones semióticas colectivas en el aula para el aprendizaje de la física : Un acercamiento cuantitativo Collective semiotic constructions in the classroom for the learning of physics,” Enseñanza la física, vol. 33, no. 2, pp. 387–396, 2021.

S. Anggrayni and F. U. Ermawati, “The validity of Four-Tier’s misconception diagnostic test for Work and Energy concepts,” in Journal of Physics: Conference Series, 2019, vol. 1171, no. 1. doi: 10.1088/1742-6596/1171/1/012037.

R. Hernández, C. Fernández C, and P. Baptista L, Metodología de la Investigación, Sexta. México, 2014. [Online]. Available: https://www.uca.ac.cr/wp content/uploads/2017/10/Investigacion.pdf

C. H. Lawshe, “a Quantitative Approach To Content Validity,” Pers. Psychol., vol. 28, no. 4, pp. 563–575, 1975, doi: 10.1111/j.1744-6570.1975.tb01393.x.

M. Vargas S, A. Máynes G, J. Cavazos A, and L. Cervantes B, “Validez del contenido de un instrumento de medición para medir el liderazgo transformacional,” Rev. Glob. Negocios, vol. 4, no. 1, pp. 35–45, 2016.

a Tristán-López, “Modificación al modelo de Lawshe para el dictamen cuantitativo de la validez de contenido de un instrumento objetivo,” Av. en medición, vol. 6, pp. 37–48, 2008.

Descargas

Publicado

2024-09-27

Cómo citar

Mosquera Lozano, E., Idoyaga, I. J., & Londoño Villamíl, G. . (2024). Energy apprenticeship in High School Students: Questionnaires validation . Scientia Et Technica, 29(03), 116–123. https://doi.org/10.22517/23447214.25175