Aplicaciones de los compuestos de carbón activado e hidroxiapatita en la remoción de iones metálicos en aguas contaminadas: una revisión bibliográfica

Composito de Hidroxiapatita y carbón activado


Autores/as

DOI:

https://doi.org/10.22517/23447214.25389

Palabras clave:

Activated carbon, Hydroxyapatite, Removal of metal ions, contaminated water, literature review.

Resumen

Water contamination by heavy metal ions and other metallic species is a global environmental problem that requires efficacious solutions. This literature review article examines the use of activated carbon compounds and hydroxyapatite for the removal of metal ions in polluted waters. Key aspects such as the synthesis methods of these compounds, their adsorption capacity, and the mechanisms of metal ion removal are thoroughly analyzed. Additionally, the advantages and limitations of these compounds are discussed, along with their potential for large-scale application in water purification. It is concluded that activated carbon compounds and hydroxyapatite show promise for the elimination of metal ions, and future research areas are suggested to optimize their efficiency and applicability. This article provides an updated overview of the topic and is relevant for researchers and professionals involved in water management and environmental protection.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

L. J. Fajardo Valderrama and F. Valderrama, “Remoción selectiva de metales pesados del agua residual Remoción selectiva de metales pesados del agua residual proveniente del proceso de decapado proveniente del proceso de decapado Citación recomendada Citación recomendada,” 2014, Accessed: Jun. 29, 2023. [Online]. Available: https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria

“Adsorción de metales pesados en aguas residuales usando materiales de origen biológico.” http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-77992015000100010 (accessed Jun. 29, 2023).

“Vista de Tratamientos para la Remoción de Metales Pesados Comúnmente Presentes en Aguas Residuales Industriales. Una Revisión | Ingeniería y Región.” https://journalusco.edu.co/index.php/iregion/article/view/710/1359 (accessed Jun. 29, 2023).

E. Toribio Jiménez, “Estudio de la capacidad de los hidroxiapatitos como reactivos para la eliminación de metales,” 2015, Accessed: Jun. 29, 2023. [Online]. Available: https://upcommons.upc.edu/handle/2099.1/26366

D. Ivan et al., “Tratamientos para la Remoción de Metales Pesados Comúnmente Presentes en Aguas Residuales Industriales. Una Revisión Treatments for Removal of Heavy Metals Commonly Found in Industrial Wastewater. A Review,” 2015.

L. J. Fajardo Valderrama and F. Valderrama, “Remoción selectiva de metales pesados del agua residual Remoción selectiva de metales pesados del agua residual proveniente del proceso de decapado proveniente del proceso de decapado Citación recomendada Citación recomendada,” 2014. [Online]. Available: https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria

M. Elkady, H. Shokry, and H. Hamad, “Microwave-Assisted Synthesis of Magnetic Hydroxyapatite for Removal of Heavy Metals from Groundwater,” Chem Eng Technol, vol. 41, no. 3, pp. 553–562, Mar. 2018, doi: 10.1002/ceat.201600631.

S. T. Ramesh, N. Rameshbabu, R. Gandhimathi, P. V. Nidheesh, and M. Srikanth Kumar, “Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite,” Appl Water Sci, vol. 2, no. 3, pp. 187–197, 2012, doi: 10.1007/s13201-012-0036-3.

A. Avram, T. Frentiu, O. Horovitz, A. Mocanu, F. Goga, and M. Tomoaia-Cotisel, “Hydroxyapatite for removal of heavy metals from wastewater,” Studia Universitatis Babes-Bolyai Chemia, vol. 62, no. 4, pp. 93–104, 2017, doi: 10.24193/subbchem.2017.4.08.

M. S. Fernando, R. M. De Silva, and K. M. N. De Silva, “Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb 2+ from aqueous solutions,” Appl Surf Sci, vol. 351, pp. 95–103, Oct. 2015, doi: 10.1016/j.apsusc.2015.05.092.

A. Vahdat, B. Ghasemi, and M. Yousefpour, “Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals,” Environ Nanotechnol Monit Manag, vol. 12, p. 100233, Dec. 2019, doi: 10.1016/J.ENMM.2019.100233.

M. S. Fernando, R. M. De Silva, and K. M. N. De Silva, “Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions,” Appl Surf Sci, vol. 351, pp. 95–103, Oct. 2015, doi: 10.1016/J.APSUSC.2015.05.092.

A. Avram, T. Frentiu, O. Horovitz, A. Mocanu, F. Goga, and M. Tomoaia-Cotisel, “Hydroxyapatite for removal of heavy metals from wastewater,” Studia Universitatis Babes-Bolyai Chemia, vol. 62, no. 4, pp. 93–104, 2017, doi: 10.24193/subbchem.2017.4.08.

A. A. Hamad, M. S. Hassouna, T. I. Shalaby, M. F. Elkady, M. A. Abd Elkawi, and H. A. Hamad, “Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals,” Int J Biol Macromol, vol. 151, pp. 1299–1313, May 2020, doi: 10.1016/j.ijbiomac.2019.10.176.

A. Vahdat, B. Ghasemi, and M. Yousefpour, “Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals,” Environ Nanotechnol Monit Manag, vol. 12, Dec. 2019, doi: 10.1016/j.enmm.2019.100233.

C. Carolina and C. Quijano, “Producción de carbón activado y sílice a partir de cascarilla de arroz - una revisión,” Scientia Et Technica, vol. 18, no. 2, pp. 422–429, 2013, Accessed: Jun. 29, 2023. [Online]. Available: https://www.redalyc.org/articulo.oa?id=84929153019

Y. Gao, Q. Yue, B. Gao, and A. Li, “Insight into activated carbon from different kinds of chemical activating agents: A review,” Science of the Total Environment, vol. 746. Elsevier B.V., Dec. 01, 2020. doi: 10.1016/j.scitotenv.2020.141094.

I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, “Preparation of activated carbon from coconut husk: Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology,” J Hazard Mater, vol. 153, no. 1–2, pp. 709–717, May 2008, doi: 10.1016/j.jhazmat.2007.09.014.

Y. Gao, Q. Yue, B. Gao, and A. Li, “Insight into activated carbon from different kinds of chemical activating agents: A review,” Science of the Total Environment, vol. 746. Elsevier B.V., Dec. 01, 2020. doi: 10.1016/j.scitotenv.2020.141094.

I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, “Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies,” J Hazard Mater, vol. 154, no. 1–3, pp. 337–346, Jun. 2008, doi: 10.1016/j.jhazmat.2007.10.031.

J. H. Tay, X. G. Chen, S. Jeyaseelan, and N. Graham, “Optimising the preparation of activated carbon from digested sewage sludge and coconut husk.”

C. A. Achury and C. Aden, “OBTENCIÓN DE CARBÓN ACTIVADO A PARTIR D E CÁS CARA D E COCO: OBTENCIÓN POR MEDIO DE ACTIVACIÓN FÍS ICA Y QUÍMICA.”

M. V Vidal, A. Rodríguez Suarez, K. M. Barrios, J. Ocampo Pérez, and W. B. Lara, “Potencial de residuos agroindustriales para la síntesis de Carbón Activado: una revisión,” Scientia et Technica, ISSN 0122-1701, Vol. 23, No. 3, 2018, págs. 411-419, vol. 23, no. 3, pp. 411–419, 2018, Accessed: Jun. 29, 2023. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6760221&info=resumen&idioma=SPA

M. Bastidas, L. M. Buelvas, M. I. Márquez, and K. Rodríguez, “Producción de Carbón Activado a partir de Precursores Carbonosos del Departamento del Cesar, Colombia,” Información tecnológica, vol. 21, no. 3, pp. 87–96, 2010, doi: 10.4067/S0718-07642010000300010.

A. P. Ramírez, S. Giraldo, E. Flórez, and N. Acelas, “Preparation of activated carbon from palm oil wastes and their application for methylene blue removal,” Revista Colombiana de Quimica, vol. 46, no. 1, pp. 33–41, Jan. 2017, doi: 10.15446/REV.COLOMB.QUIM.V46N1.62851.

G. J. F. Cruz Cerro, M. V. Yucra, J. S. Contreras, J. L. Solís Veliz, M. M. Gómez León, and R. Keiski, “ESTUDIO DE CARBONES ACTIVADOS IMPREGNADOS CON QUITOSANO Y SU COMPARACIÓN CON CARBONES COMERCIALES,” 2016.

D. Luna, A. González, M. Gordon, and N. Martín, “Obtención de carbón activado a partir de la cáscara de coco.”

M. Zięzio, B. Charmas, K. Jedynak, M. Hawryluk, and K. Kucio, “Preparation and characterization of activated carbons obtained from the waste materials impregnated with phosphoric acid(V),” Applied Nanoscience (Switzerland), vol. 10, no. 12, pp. 4703–4716, Dec. 2020, doi: 10.1007/S13204-020-01419-6/TABLES/4.

R. De Janeiro, “Preparação E Caracterização De Hidroxiapatita,” 2006.

H. Melero, J. Fernández, and J. M. Guilemany, “Recubrimientos bioactivos: Hidroxiapatita y titania,” Biomecánica, vol. 19, pp. 35–48, 2011, [Online]. Available: http://upcommons.upc.edu/revistes/handle/2099/12325

S. I. Eguía Eguía, “ESTUDIO MICROESTRUCTURAL DE PARTíCULAS DE HIDROXIAPATITA CRECIDAS SOBRE GELES DE SíLICE,” Universidad Autónoma de Nuevo León, 2009. [Online]. Available: https://www.google.com/search?client=firefox-b-d&q=ESTUDIO+MICROESTRUCTURALDE+PART%13ICULAS+DEHIDROXIAPATITA+CRECIDASSOBRE+GELES+DE+S%13ILICE

Y. J. Mata Cocoletzi, “Caracterización estructural, microestructural y química durante el proceso para obtener Hidroxiapatia a partir de hueso de bovino,” Thesis, p. 101, 2016.

E. Peón, A. Jiménez Morales, E. Fernández-Escalante, M. C. García-Alonso, M. L. Escudero, and J. C. Galván, “Recubrimientos de hidroxiapatita preparados mediante un proceso sol-gel,” Revista de Metalurgia, vol. 41, no. Extra, pp. 479–482, 2005, doi: 10.3989/revmetalm.2005.v41.iextra.1080.

C. Peniche, Y. Solís, N. Davidenko, and R. García, “Materiales compuestos de quitosana e hidroxiapatita,” Biotecnologia Aplicada, vol. 27, no. 3, 2010.

S. I. Eguía, “Estudio microestructural de partículas de hidroxiapatita crecidas sobre geles de sílice,” Universida Autonoma de Nuevo leon, vol. 1, p. 65, 2019.

J. L. A. T. FUENTES, “Obtención y caracterización de hidroxiapatita porosa a partir de cáscara de huevo y tunicina,” 2010.

M. I. Ochoa Gómez, “Síntesis Y Caracterización De Polvos De Hidroxiapatita Carbonatada Tipo B Con Diferentes Contenidos De Carbonato,” Revista Colombiana de Materiales, no. 17, pp. 22–32, 2021, doi: 10.17533/udea.rcm.n17a03.

Y. G. Morales, “SÍNTESIS, CARACTERIZACIÓN Y EVALUACIÓN DE LA BIOACTIVIDAD DE BIOMATERIALES COMPUESTOS DE HIDROXIAPATITA CARBONATADA/HIDROXIAPATITA ESTEQUIOMÉTRICA DE ALTA CRISTALINIDAD,” Universidad de Sonora, 2019.

C. A. Carvalho Zavaglia, R. F. Silva, S. A. Santos, and C. R. Pelliciari de Lima, “Caracterización de recubrimientos de hidroxiapatita depositadas sobre la aleación Ti6Al7Nb a través de aspersión térmica a plasma,” Biomecánica, vol. 8, no. 1, pp. 49–53, 2000, doi: 10.5821/sibb.v8i1.1646.

P. A. F. Sossa, B. S. Giraldo, B. C. G. Garcia, E. R. Parra, and P. J. A. Arango, “Comparative study between natural and synthetic Hydroxyapatite: structural, morphological and bioactivity properties,” Matéria (Rio de Janeiro), vol. 23, no. 4, Dec. 2018, doi: 10.1590/s1517-707620180004.0551.

S. Marković et al., “Synthetical bone-like and biological hydroxyapatites: A comparative study of crystal structure and morphology,” Biomedical Materials, vol. 6, no. 4, 2011, doi: 10.1088/1748-6041/6/4/045005.

S. M. Londoño-Restrepo, C. F. Ramirez-Gutierrez, A. del Real, E. Rubio-Rosas, and M. E. Rodriguez-García, “Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air,” J Mater Sci, vol. 51, no. 9, pp. 4431–4441, 2016, doi: 10.1007/s10853-016-9755-4.

A. Heredia, I. De F, I. De F, and C. De F, “Thermal analysis study of human bone,” vol. 8, pp. 4777–4782, 2003.

B. Bazan et al., “Metodologías sintéticas para la obtención de compuestos de coordinación metal-orgánicos,” Macla. Revista de la Sociedad Española de Mineralogia, vol. 2, no. 16, pp. 162–163, 2012, doi: 10.1021/cr200304e.fig.

R. Uribe, A. Uvillús, L. Fernández, O. Bonilla, A. Jara, and G. González, “Electrochemical Deposition of Hydroxyapatite on Stainless Steel Coated with Tantalum/Tantalum Nitride Using Simulated Body Fluid as an Electrolytic Medium,” Coatings, vol. 12, no. 4, Apr. 2022, doi: 10.3390/coatings12040440.

S. Ban and S. Maruno, “Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid,” 1998.

K. Q. Alvarez, “Síntesis de cordierita a partir de hidroxihidrogeles bajo tratamiento hidrotermal.,” pp. 1–110, 2012.

A. Ruffini, S. Sprio, L. Preti, and A. Tampieri, “Synthesis of Nanostructured Hydroxyapatite via Controlled Hydrothermal Route,” Biomaterial-supported Tissue Reconstruction or Regeneration, May 2019, doi: 10.5772/INTECHOPEN.85091.

Pranoto, T. Martini, F. Astuti, and W. Maharditya, “Test the Effectiveness and Characterization of Quartz Sand/Coconut Shell Charcoal Composite as Adsorbent of Manganese Heavy Metal,” IOP Conf Ser Mater Sci Eng, vol. 858, no. 1, Jul. 2020, doi: 10.1088/1757-899X/858/1/012041.

R. P., S. P., and S. S., “Preparation and characterization of activated carbons derived from palmyra waste of coastal region, in: Proceedings of International Conference on ‘‘Impact of Climate Change on Coastal Ecosystem.” 2011.

M. J. Rampe, I. R. S. Santoso, H. L. Rampe, V. A. Tiwow, and A. Apita, “Infrared Spectra Patterns of Coconut Shell Charcoal as Result of Pyrolysis and Acid Activation Origin of Sulawesi, Indonesia,” in E3S Web of Conferences, EDP Sciences, Dec. 2021. doi: 10.1051/e3sconf/202132808008.

Z. M. Lazim, T. Hadibarata, M. H. Puteh, and Z. Yusop, “Adsorption characteristics of bisphenol a onto low-cost modified phyto-waste material in aqueous solution,” Water Air Soil Pollut, vol. 226, no. 3, 2015, doi: 10.1007/s11270-015-2318-5.

V. Uskoković, “Ion-doped hydroxyapatite: An impasse or the road to follow?,” Ceram Int, vol. 46, no. 8, pp. 11443–11465, 2020, doi: 10.1016/j.ceramint.2020.02.001.

D. N. Ungureanu, N. Angelescu, R. M. Ion, E. V. Stoian, and C. Z. Rizescu, “Synthesis and characterization of hydroxyapatite nanopowders by chemical precipitation,” 10th WSEAS International Conference on EHAC’11 and ISPRA’11, 3rd WSEAS Int. Conf. onNanotechnology, Nanotechnology’11, 6th WSEAS Int. Conf. on ICOAA’11, 2nd WSEAS Int.Conf. on IPLAFUN’11, no. September 2015, pp. 296–301, 2011.

X. Zhang, S. Wu, Y. Liu, Z. Wang, H. Zhang, and R. Xiao, “Removal of Cr(VI) from aqueous solution by Rice-husk-based activated carbon prepared by Dual-mode heating method,” Carbon Resources Conversion, vol. 6, no. 2, pp. 76–84, Jun. 2023, doi: 10.1016/J.CRCON.2023.01.003.

X. Y. Liu et al., “Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process,” Molecules, vol. 15, no. 10, pp. 7188–7196, Oct. 2010, doi: 10.3390/molecules15107188.

D. Luna, A. González, M. Gordon, and N. Martín, “Obtención de carbón activado a partir de la cáscara de coco.”

Publicado

2026-01-05

Cómo citar

Alzate Acevedo, N. (2026). Aplicaciones de los compuestos de carbón activado e hidroxiapatita en la remoción de iones metálicos en aguas contaminadas: una revisión bibliográfica: Composito de Hidroxiapatita y carbón activado. Scientia Et Technica, 30(04). https://doi.org/10.22517/23447214.25389

Número

Sección

Ciencias Ambientales