Densidad de neutrones estocástica con efectos de temperatura


Autores/as

DOI:

https://doi.org/10.22517/23447214.25485

Palabras clave:

Densidad nuclear de neutrones, reactividad nuclear, ecuaciones estocásticas, efectos de temperatura de retroalimentación, métodos numéricos

Resumen

En este trabajo, presentamos un enfoque novedoso para calcular la densidad de neutrones con efectos de retroalimentación de temperatura, utilizando el esquema iterativo semi-implícito de Milstein para resolver numéricamente las ecuaciones cinéticas puntuales estocásticas. Nuestro método se valida mediante una serie de experimentos numéricos, empleando 500 trayectorias de movimiento browniano para calcular la media y la desviación estándar en un paso de tiempo seleccionado. Los resultados demuestran que nuestro método proporciona aproximaciones precisas. Por lo tanto, puede utilizarse como método alternativo para el cálculo del valor esperado de la densidad de neutrones, y para determinar el tiempo hasta el pico en el que se produce este máximo, considerando los efectos de la temperatura y los parámetros físicos relevantes para los reactores nucleares.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Diego Peña Lara, Universidad del Valle

Diego Peña Lara. Recibió el título de Físico de la Universidad del Valle 1986, el título M Sc. en Física de la Universidad de. Valle en el año 1990 y el título de Doctor en Física de la Universidad Federal de Minas Gerais en el año 1999. Entre los intereses investigativos se encuentra la Física Estadística, Física computacional con métodos numéricos, dinámica molecular, método de Monte Carlo, procesos estocásticos, Transiciones de fases en sistemas magnético e iónicos

Faiber Robayo Betancourt, Universidad Surcolombiana

Faiber Robayo Betancourt. Recibió el título de Ingeniero Electrónico de la Universidad Surcolombiana en 2002, el título de Magister en Ingeniería de Control en el año 2010. Entre sus intereses investigativos se encuentra el Procesamiento de señales y los sistemas de control.

Citas

J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, Second ed. New York: John Wiley & Sons Inc, 1976.

M. Stacey, Nuclear Reactor Physics 3e. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. doi: 10.1002/9783527812318

D. Hetrick, Dynamics of Nuclear Reactors; American Nuclear Society: La Grange Park, IL, USA, 1993.

J. G. Hayes and E. J. Allen, “Stochastic Point-kinetics equations in nuclear reactor dynamics,” Ann Nucl Energy, vol. 32, pp. 572-587, 2005, doi.org/10.1016/j.anucene.2004.11.009

S.S. Ray, “Numerical Simulation of Stochastic Point Kinetic Equations in the Dynamical System of Nuclear Reactor,” Ann Nucl Energy, vol. 49, pp. 154-159, 2012, doi.org/10.1016/j.anucene.2012.05.022

S.S. Ray and A. Patra, “Numerical Simulation for Stochastic Point Kinetic Equations with Sinusoidal Reactivity in Dynamical System of Nuclear Reactor,” Int. J Nucl Sci Technol, vol. 7, pp. 231-242, 2013, doi.org/10.1504/IJNEST.2013.052165

S.M. Ayyoubzadeh and N. Vosoughi, “An Alternative Stochastic Formulation for the Point Reactor,” Ann Nucl Energy, vol. 63, pp. 691-695, 2014, doi.org/10.1016/j.anucene.2013.09.013

A.A. Nahla and A.M. Edress, “Analytical Exponential Model for Stochastic Point Kinetic Equations via Eigenvalues and Eigenvectors,” Nucl Sci Technol, vol. 27, pp. 19-27, 2016a, doi.org/10.1007/s41365-016-0025-6

A.A. Nahla and A.M. Edress, “Efficient Stochastic Model for the Point Kinetics Equations,” Stochast Analy Appl, vol. 34, pp. 598-609, 2016b, doi.org/10.1080/07362994.2016.1159519

Da Silva.M. Wollmanna, R. Vasques, B.E.J. Bodmann and M.T Vilhena, “A Nonstiff Solution for the Stochastic Neutron Point Kinetics Equations,” Ann Nucl Energy, vol. 97, pp. 47-52, 2016, doi.org/10.1016/j.anucene.2016.06.026

D. Suescún-Díaz, D., Y.M. Oviedo-Torres and L.E. Giron-Cruz, “Solution of the Stochastic Point Kinetics Equations Using the Implicit Euler-Maruyama Method,” Ann Nucl Energy, vol. 117, pp. 45-52, 2018, doi.org/10.1016/j.anucene.2018.03.013

A. A. Nahla, “Stochastic model for the nonlinear point reactor kinetics equations in the presence Newtonian temperature feedback effects,” J. Difference Equations and Applications, vol. 23, pp. 1001-1006, 2017, doi.org/10.1080/10236198.2017.1308507

S. Singh and R. Saha, “On the comparison of two split-step methods for the numerical simulation of stochastic point kinetics equations in presence of Newtonian temperature feedback effects,” Ann Nucl Energy, vol. 110, pp. 865–873, 2017, doi.org/10.1016/j.anucene.2017.08.001

S. Singh and R. Saha, “Numerical solutions of stochastic nonlinear point reactor kinetics equations in presence of Newtonian temperature feedback effects,” J Computational and Theorical Transport, Vol. 28, pp. 47-57, 2019, doi.org/10.1080/23324309.2019.1604549

B.D. Ganapol, “A highly accurate algorithm for the solution of the point kinetics equations,” Ann Nucl Energy, vol. 62, pp. 564-571, 2013, doi.org/10.1016/j.anucene.2012.06.007

S. Leite S., M. De Vilhena M., B. Bodmann, “Solution of the point reactor kinetics equations with temperature feedback by the ITS2 method,” Prog Nucl Energy. Vol. 91, pp. 240-249, 2016, doi.org/10.1016/j.pnucene.2016.05.001

G.N. Milstein, M. V. Tretyakov, Stochastic Numerics for Mathematical Physics, Springer International Publishing, Cham, 2021, doi.org/10.1007/978-3-030-82040-4.

P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, New York. 1992

J. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus, Orsay Cedex, Springer, France. 2016 https://doi.org/10.1007/978-3-319-31089-3

Descargas

Publicado

2024-09-27

Cómo citar

Suescún Díaz, D., Peña Lara, D., & Betancourt, F. R. . (2024). Densidad de neutrones estocástica con efectos de temperatura. Scientia Et Technica, 29(03), 132–137. https://doi.org/10.22517/23447214.25485

Número

Sección

Ciencias Básicas