El estudio de algunas propiedades de las funciones armónicas para el problema de dirichlet de la ecuación de laplace
Resumen
En contraste con las ecuaciones diferenciales ordinarias, no existe una teoría unificada para el estudio de las ecuaciones en derivadas parciales. Algunas ecuaciones en derivadas parciales poseen sus propias teorías, mientras que otras aún no las poseen. La razón para esto es por la complejidad de su geometría. En el caso de una ecuación diferencial ordinaria un campo vectorial local es definido en una variedad. Para una ecuación diferencial parcial un subconjunto de la tangente al un espacio de dimensión mayor que 1 es definido en cada punto de la variedad. Como es sabido, inclusive para un campo bidimensional inmerso en uno tridimensional en general no es integrable. Una teoría consolidada para el estudio de la ecuación de Laplace es la considerada en este artículo, la teoría de las funciones armónicas. En este artículo se estudiaran algunas propiedades de las funciones armónicas para la solución de la ecuación de LaplaceDescargas
Descargas
-
Vistas(Views): 467
- PDF Descargas(Downloads): 374
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor y licencias
La revista es de acceso abierto gratuito y sus artículos se publican bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial-Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
Los autores de un artículo aceptado para publicación cederán la totalidad de los derechos patrimoniales a la Universidad Tecnológica de Pereira de manera gratuita, teniendo en cuenta lo siguiente: En caso de que el trabajo presentado sea aprobado para su publicación, los autores deben autorizar de manera ilimitada en el tiempo, a la revista para que pueda reproducirlo, editarlo, distribuirlo, exhibirlo y comunicarlo en cualquier lugar, ya sea por medios impresos, electrónicos, bases de datos, repositorios, discos ópticos, Internet o cualquier otro medio requerido.
Los cedentes mediante contrato CESIÓN DE DERECHOS PATRIMONIALES declaran que todo el material que forma parte del artículo está totalmente libre de derechos de autor de terceros y, por lo tanto, se hacen responsables de cualquier litigio o reclamación relacionada o reclamación relacionada con derechos de propiedad intelectual, exonerando de toda responsabilidad a la Universidad Tecnológica de Pereira (entidad editora) y a su revista Scientia et Technica. De igual forma, los autores aceptan que el trabajo que se presenta sea distribuido en acceso abierto gratuito, resguardando los derechos de autor bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial- Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
https://creativecommons.org/licenses/by-nc-sa/4.0/
A los autores, la revista Scientia et Technica tiene la obligación de respetarle los derechos morales (artículo 30 de la Ley 23 de 1982 del Gobierno Colombiano) que se les debe reconocen a estos la paternidad de la obra, el derecho a la integridad y el derecho de divulgación. Estos no se pueden ceder ni renunciar.