Human Metapneumovirus: An Emerging Challenge for Public Health
DOI:
https://doi.org/10.22517/25395203.25767Keywords:
Human metapneumovirus, Virus, Respiratory infectionAbstract
Human metapneumovirus (hMPV) is a negative-sense single-stranded RNA virus, discovered in 2001, that belongs to the Paramyxoviridae family. This respiratory pathogen causes acute infections in individuals of all ages, being potentially severe in children, the elderly, and immunocompromised individuals. The epidemiology of hMPV shows seasonal prevalence, distributed globally, often coexisting with other respiratory viruses. The pathogenesis of hMPV involves the infection of epithelial cells in the lower respiratory tract, leading to symptoms ranging from mild colds to severe bronchiolitis and pneumonia. Clinical manifestations include fever, cough, wheezing, and dyspnea. Diagnosis is made using methods such as polymerase chain reaction (PCR) and rapid antigen tests. As for treatment, there is no specific antiviral; symptoms are managed with respiratory support and fluids. Prevention relies on hygiene measures, such as handwashing and avoiding close contact with infected individuals, with no vaccines currently available.
Downloads
References
Sonja T, Jesse J, et al. Zoonotic origins of human metapneumovirus: a journey from birds to humans. Viruses. 2022;14(4):677. https://doi.org/10.3390/v14040677
Çetiner S, et al. Human metapneumovirus pneumonia during the SARS-CoV-2 pandemic. DAHUDER Med J. 2022;2(4):124–7. https://doi.org/10.56016/dahudermj.1167707
Russell CJ, et al. Human metapneumovirus: a largely unrecognized threat to human health. Pathogens. 2020;9(2):109. https://doi.org/10.3390/pathogens9020109
Esposito S, Mastrolia MV. Metapneumovirus infections and respiratory complications. Semin Respir Crit Care Med. 2016;37(4):512–21. https://doi.org/10.1055/s-0036-1584800
Reina J, Murillas J, Taboada C. Infección respiratoria aguda causada por el metapneumovirus humano: análisis de 39 casos. Med Clin (Barc). 2016;147(9):418–9. https://doi.org/10.1016/j.medcli.2016.05.004
Philippot Q, et al. Human metapneumovirus infection is associated with a substantial morbidity and mortality burden in adult inpatients. Heliyon. 2024;10(13):e33231. https://doi.org/10.1016/j.heliyon.2024.e33231
Holzemer NF, et al. Human metapneumovirus infection in hospitalized children. Respir Care. 2020;65(5):650–7. https://doi.org/10.4187/respcare.07156
Soto JA, et al. Human metapneumovirus: mechanisms and molecular targets used by the virus to avoid the immune system. Front Immunol. 2018;9:2466. https://doi.org/10.3389/fimmu.2018.02466
Cifuentes-Muñoz N, et al. Human metapneumovirus induces formation of inclusion bodies for efficient genome replication and transcription. J Virol. 2017;91(24):e01282-17. https://doi.org/10.1128/jvi.01282-17
Kroll JL, Weinberg A. Human metapneumovirus. Semin Respir Crit Care Med. 2011;32(4):447–53. https://doi.org/10.1055/s-0031-1283284
Wei TL, et al. Whole genome sequencing and evolution analyses of human metapneumovirus. Virus Genes. 2023;1–8. https://doi.org/10.1007/s11262-023-02001-2
Kamau E, et al. Whole genome sequencing and phylogenetic analysis of human metapneumovirus strains from Kenya and Zambia. BMC Genomics. 2020;21(1):5. https://doi.org/10.1186/s12864-019-6400-z
Céspedes P, et al. Modulation of host immunity by the human metapneumovirus. Clin Microbiol Rev. 2016;29(4):795–818. https://doi.org/10.1128/CMR.00009-16
Skiadopoulos MH, et al. The two major human metapneumovirus genetic lineages are highly related antigenically, and the fusion (F) protein is a major contributor to this antigenic relatedness. J Virol. 2004;78(13):6927–37. https://doi.org/10.1128/JVI.78.13.6927-6937.2004
Wen X, et al. A chimeric pneumovirus fusion protein carrying neutralizing epitopes of both MPV and RSV. PLoS One. 2016;11(5):e0155917. https://doi.org/10.1371/journal.pone.0155917
Melero JA, Mas V. The Pneumovirinae fusion (F) protein: a common target for vaccines and antivirals. Virus Res. 2015;209:128–35. https://doi.org/10.1016/j.virusres.2015.02.006
Connolly SA, et al. Refolding of a paramyxovirus F protein from prefusion to postfusion conformations observed by liposome binding and electron microscopy. Proc Natl Acad Sci U S A. 2006;103(47):17903–8. https://doi.org/10.1073/pnas.0607329103
Van den Hoogen BG, et al. Analysis of the genomic sequence of a human metapneumovirus. Virology. 2002;295(1):119–32. https://doi.org/10.1006/viro.2001.1355
Thompson RE, et al. Specific residues in the C-terminal domain of the human metapneumovirus phosphoprotein are indispensable for formation of viral replication centers and regulation of the function of the viral polymerase complex. J Virol. 2023;97(5):e0003023. https://doi.org/10.1128/jvi.00030-23
Loevenich S, et al. Human metapneumovirus driven IFN-β production antagonizes macrophage transcriptional induction of IL1-β in response to bacterial pathogens. Front Immunol. 2023;14:1173605. https://doi.org/10.3389/fimmu.2023.1173605
Sojati J, et al. Clinical human metapneumovirus isolates show distinct pathogenesis and inflammatory profiles but similar CD8+ T cell impairment. mSphere. 2024;9(1):e0057023. https://doi.org/10.1128/msphere.00570-23
Bugatti A, et al. Human metapneumovirus establishes persistent infection in lung microvascular endothelial cells and primes a Th2-skewed immune response. Microorganisms. 2020;8(6):824. https://doi.org/10.3390/microorganisms8060824
Ballegeer M, Saelens X. Cell-mediated responses to human metapneumovirus infection. Viruses. 2020;12(5):542. https://doi.org/10.3390/v12050542
Boivin G, et al. Virological features and clinical manifestations associated with human metapneumovirus: a new paramyxovirus responsible for acute respiratory-tract infections in all age groups. J Infect Dis. 2002;186(9):1330–4. https://doi.org/10.1086/344319
Williams JV. Human metapneumovirus: an important cause of respiratory disease in children and adults. Curr Infect Dis Rep. 2005;7(3):204–10. https://doi.org/10.1007/s11908-005-0036-7
Rechi Sierra K, Varela DC. Neumonía por metapneumovirus humano en adulto con diabetes mellitus tipo 2. Rev Med Hondur. 2023;91(Suppl 1):S14. https://doi.org/10.5377/rmh.v91isupl.1.16176
Khan A, et al. Demographics, clinical presentation and outcome of metapneumovirus infection in adults: a case series analysis at Scarborough General Hospital, United Kingdom. Cureus. 2024;16(11):e73292. https://doi.org/10.7759/cureus.73292
Du Y, Liu X, et al. Rapid and one-tube detection of human metapneumovirus using the RT-RPA and CRISPR/Cas12a. J Virol Methods. 2024;315:115001. https://doi.org/10.1016/j.jviromet.2024.115001
Yajima T, et al. Comparison of sputum specimens and nasopharyngeal swab specimens for diagnosis of acute human metapneumovirus-related lower respiratory tract infections in adults. J Clin Virol. 2022;154:105238. https://doi.org/10.1016/j.jcv.2022.105238
Sugimoto S, et al. Development of a duplex real-time RT-PCR assay for the detection and identification of two subgroups of human metapneumovirus in a single tube. J Virol Methods. 2023;316:114812. https://doi.org/10.1016/j.jviromet.2023.114812
Freymuth F. Virus respiratorio sincitial, metapneumovirus y virus parainfluenza humanos: cuadro clínico y fisiopatología. EMC Pediatr. 2007;42(4):1–9. https://doi.org/10.1016/s1245-1789(07)70240-8
Alves MA, Borges SB, et al. Epidemiological profile of hospitalized human metapneumovirus in a capital of central-west of Brazil from 2017 to 2019: high lethality at extremes of age. Rev Patol Trop. 2023;51(4):243–53. https://doi.org/10.5216/rpt.v51i4.74236
Samuel S, et al. Human metapneumovirus infection in immunocompromised patients. Cancer Control. 2016;23(4):442–5. https://doi.org/10.1177/107327481602300416
Von Itzstein M, et al. Drug repurposing for therapeutic discovery against human metapneumovirus infection. bioRxiv. 2022. https://doi.org/10.1101/2022.07.24.501068
Van Den Bergh A, et al. Drug repurposing for therapeutic discovery against human metapneumovirus infection. Antimicrob Agents Chemother. 2022;66(10):e01008-22. https://doi.org/10.1128/aac.01008-22
Kumar P, Srivastava M. Prophylactic and therapeutic approaches for human metapneumovirus. VirusDis. 2018;29(4):434–44. https://doi.org/10.1007/s13337-018-0498-5
Wen SC, Williams JV. New approaches for immunization and therapy against human metapneumovirus. Clin Vaccine Immunol. 2015;22(8):858–66. https://doi.org/10.1128/CVI.00230-15
Downloads
-
Vistas(Views): 21
- PDF (Español (España)) Descargas(Downloads): 24
Published
How to Cite
Issue
Section
License
Cesión de derechos y tratamiento de datos
La aceptación de un artículo para su publicación en la Revista Médica de Risaralda implica la cesión de los derechos de impresión y reproducción, por cualquier forma y medio, del autor a favor de Facultad de Ciencias de la Salud de la Universidad Tecnológica de Pereira. 1995-2018. Todos los derechos reservados ®
por parte de los autores para obtener el permiso de reproducción de sus contribuciones. La reproducción total o parcial de los trabajos aparecidos en la Revista Médica de Risaralda, debe hacerse citando la procedencia, en caso contrario, se viola los derechos reservados.
Asimismo, se entiende que los conceptos y opiniones expresados en cada trabajo son de la exclusiva responsabilidad del autor, sin responsabilizarse ni solidarizarse, necesariamente, ni la redacción, ni la editorial.
Es responsabilidad de los autores poder proporcionar a los lectores interesados copias de los datos en bruto, manuales de procedimiento, puntuaciones y, en general, material experimental relevante.
Asimismo, la Dirección de la revista garantiza el adecuado tratamiento de los datos de carácter personal